Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equa...A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.展开更多
In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening c...In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.展开更多
Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those e...Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.展开更多
This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational funct...This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which...In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which cover the existing solutions. Compared to other methods, the presented method is more direct, more concise, more effective, and easier for calculations. In addition, it can be used to solve other nonlinear evolution equations in mathematical physics.展开更多
As an improved version of trial equation method, a new trial equation method is proposed. Using this method, abundant new exact traveling wave solutions to a high-order KdV-type equation are obtained.
An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solut...An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solutions can be found by this new method, which include bell-shaped soliton solutions, kink-shaped soliton solutions, periodic wave solution, and new travelling waves.展开更多
In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than pro...In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.展开更多
The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and elemen...The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.展开更多
In this paper, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. We study the (2+1)-dimensional BKP...In this paper, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. We study the (2+1)-dimensional BKP equation and get a series of new types of traveling wave solutions. The method used here can be also extended to other nonlinear partial differential equations.展开更多
Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equ...Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equation, which solves the field by marching them along the paraxial direction. Numerical results show that a single wide-angle parabofic equation run can compute multi-object RCS efficiently for angles up to 45 ° . The method provides anew and efficient numerical method for computation electromagnetics.展开更多
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current p...When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.展开更多
In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these t...In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.展开更多
In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat condu...In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.展开更多
An analytic study of the nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equa- tion is presented in this paper. The Riccati equation method combined with the generalized extended (G'/G')-expansion method is an ...An analytic study of the nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equa- tion is presented in this paper. The Riccati equation method combined with the generalized extended (G'/G')-expansion method is an interesting approach to find more general exact so- lutions of the nonlinear evolution equations in mathematical physics. We obtain the traveling wave solutions involving parameters, which are expressed by the hyperbolic and trigonometric function solutions. When the parameters are taken as special values, the solitary and periodic wave solutions are given. Comparison of our new results in this paper with the well-known results are given.展开更多
Parabolic equation (PE) method is an efficient tool for modelling underwater sound propagation, particularly for problems involving range dependence. Since the PE method was first introduced into the field of underw...Parabolic equation (PE) method is an efficient tool for modelling underwater sound propagation, particularly for problems involving range dependence. Since the PE method was first introduced into the field of underwater acoustics, it has been about 40 years, during which contributions to extending its capability has been continuously made. The most recent review paper surveyed the contributions made before 1999. In the period of 2000-2016, the development of PE method basically focuses on seismo-acoustic problems, three-dimensional problems, and realistic applications. In this paper, a review covering the contribution from 2000 to 2016 is given, and what should be done in future work is also discussed.展开更多
In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensa...In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.展开更多
In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructi...In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.展开更多
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.
文摘A trial equation method to nonlinear evolution equation with rank inhomogeneous is given. As appncations, the exact traveling wave solutions to some higher-order nonlinear equations such as generalized Boussinesq equation, generalized Pochhammer-Chree equation, KdV-Burgers equation, and KS equation and so on, are obtained. Among these, some results are new. The proposed method is based on the idea of reduction of the order of ODE. Some mathematical details of the proposed method are discussed.
基金Item Sponsored by National Natural Science Foundation of China(51075353)
文摘In order to improve rolled strip quality, precise plate shape control theory should be established. Roll flat- tening theory is an important part of the plate shape theory. To improve the accuracy of roll flattening calculation based on semi infinite body model, especially near the two roll barrel edges, a new and more accurate roll flattening model is proposed. Based on boundary integral equation method, an analytical model for solving a finite length semi infinite body is established. The lateral surface displacement field of the finite length semi-infinite body is simulated by finite element method (FEM) and lateral surface displacement decay functions are established. Based on the boundary integral equation method, the numerical solution of the finite length semi-infinite body under the distribu ted force is obtained and an accurate roll flattening model is established. Different from the traditional semi-infinite body model, the matrix form of the new roll flattening model is established through the mathematical derivation. The result from the new model is more consistent with that by FEM especially near the edges.
基金Item Sponsored by National Natural Science Foundation of China(50271009)
文摘Without considering the effects of alloying interaction on the Jominy end-quench curves, the prediction resuits obtained by YU Bai-hai's nonlinear equation method for multi-alloying steels were different from those experimental ones reported in literature. Some alloying elements have marked influence on Jominy end-quench curves of steels. An improved mathematical model for simulating the Jominy end-quench curves is proposed by introducing a parameter named alloying interactions equivalent (Le). With the improved model, the Jominy end-quench curves of steels so obtained agree very well with the experimental ones.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010B17914) and the National Natural Science Foundation of China (Grant No. 10926162).
文摘This paper applies an extended auxiliary equation method to obtain exact solutions of the KdV equation with variable coefficients. As a result, solitary wave solutions, trigonometric function solutions, rational function solutions, Jacobi elliptic doubly periodic wave solutions, and nonsymmetrical kink solution are obtained. It is shown that the extended auxiliary equation method, with the help of a computer symbolic computation system, is reliable and effective in finding exact solutions of variable coefficient nonlinear evolution equations in mathematical physics.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
基金supported by the National Natural Science Foundation of China (No.10461005)the Ph.D.Programs Foundation of Ministry of Education of China (No.20070128001)the High Education Science Research Program of Inner Mongolia (No.NJZY08057)
文摘In this paper, a new auxiliary equation method is used to find exact travelling wave solutions to the (1+1)-dimensional KdV equation. Some exact travelling wave solu- tions with parameters have been obtained, which cover the existing solutions. Compared to other methods, the presented method is more direct, more concise, more effective, and easier for calculations. In addition, it can be used to solve other nonlinear evolution equations in mathematical physics.
文摘As an improved version of trial equation method, a new trial equation method is proposed. Using this method, abundant new exact traveling wave solutions to a high-order KdV-type equation are obtained.
文摘An extended sine-Gordon equation method is proposed to construct exact travelling wave solutions to Maccari's equation based upon a generalized sine-Gordon equation. It is shown that more new travelling wave solutions can be found by this new method, which include bell-shaped soliton solutions, kink-shaped soliton solutions, periodic wave solution, and new travelling waves.
基金the State Key Basic Research Development Program of China under Grant No.2004CB318000
文摘In this paper, extended projective Riccati equation method is presented for constructing more new exact solutions of nonlinear differential equations in mathematical physics, which is direct and more powerful than projective Riccati equation method. In order to illustrate the effect of the method, Broer Kaup Kupershmidt system is employed and Jacobi doubly periodic solutions are obtained. This algorithm can also be applied to other nonlinear differential equations.
文摘The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.
基金Foundation item: Supported by the National Natural Science Foundation of China(10647112)
文摘In this paper, auxiliary equation method is proposed for constructing more general exact solutions of nonlinear partial differential equation with the aid of symbolic computation. We study the (2+1)-dimensional BKP equation and get a series of new types of traveling wave solutions. The method used here can be also extended to other nonlinear partial differential equations.
基金This project was partially supported by the National Natural Science Foundation of China (60371041).
文摘Based on a Pade approximation, a wide-angle parabolic equation method is introduced for computing the multiobject radar cross section (RCS) for the first time. The method is a paraxial version of the scalar wave equation, which solves the field by marching them along the paraxial direction. Numerical results show that a single wide-angle parabofic equation run can compute multi-object RCS efficiently for angles up to 45 ° . The method provides anew and efficient numerical method for computation electromagnetics.
文摘When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.
文摘In the view of Reissner's and Kirchhoff's theories, respectively, we formulate the isotropicalized governing equations for the anisotropic plates, and give the proof of the equivalence relation between these two plate-models for the simply-supported rectangular orthotropic plates. The well-known fundamental solutions of the isotrqpic plates are utlized for the spline integral equation analysis of anisotropic plates.Even with sparse meshes the satisfactory results can be obtained. The analysis of plates on two-parameter elastic foundation is so simple as the common case that only a few terms should be added to the formulas of fictitious loads.
文摘In this paper, a novel calibration integral equation is derived for resolving double-sided, two-probe inverse heat conduction problem of surface heat flux estimation. In contrast to the conventional inverse heat conduction techniques, this calibration approach does not require explicit input of the probe locations, thermophysical properties of the host material and temperature sensor parameters related to thermal contact resistance, sensor capacitance and conductive lead losses. All those parameters and properties are inherently contained in the calibration framework in terms of Volterra integral equation of the first kind. The Laplace transform technique is applied and the frequency domain manipulations of the heat equation are performed for deriving the calibration integral equation. Due to the ill-posed nature, regularization is required for the inverse heat conduction problem, a future-time method or singular value decomposition (SVD) can be used for stabilizing the ill-posed Volterra integral equation of the first kind.
文摘An analytic study of the nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equa- tion is presented in this paper. The Riccati equation method combined with the generalized extended (G'/G')-expansion method is an interesting approach to find more general exact so- lutions of the nonlinear evolution equations in mathematical physics. We obtain the traveling wave solutions involving parameters, which are expressed by the hyperbolic and trigonometric function solutions. When the parameters are taken as special values, the solitary and periodic wave solutions are given. Comparison of our new results in this paper with the well-known results are given.
基金Project supported by the Foundation of State Key Laboratory of Acoustics,Institute of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201303)the National Natural Science Foundation of China(Grant Nos.11104044,11234002,and 11474073)
文摘Parabolic equation (PE) method is an efficient tool for modelling underwater sound propagation, particularly for problems involving range dependence. Since the PE method was first introduced into the field of underwater acoustics, it has been about 40 years, during which contributions to extending its capability has been continuously made. The most recent review paper surveyed the contributions made before 1999. In the period of 2000-2016, the development of PE method basically focuses on seismo-acoustic problems, three-dimensional problems, and realistic applications. In this paper, a review covering the contribution from 2000 to 2016 is given, and what should be done in future work is also discussed.
文摘In this paper, the nonlinear Schr?dinger equation combining quadratic-cubic nonlinearity is considered, which can be represented by an approximate model of relatively dense quasi-one-dimensional Bose-Einstein condensate. Based on the bifurcation theory, we proved the existence of solitary and periodic solutions. The methods we take are the trial equation method and the complete discrimination system for polynomial method. Therefore, we obtain the exact chirped solutions, which are more abundant in type and quantity than the existing results, so that the equation has more profound physical significance. These two methods are rigorously mathematical derivation and calculations, rather than based on certain conditional assumptions. In addition, we give some specific parameters to graphing the motion of the solutions, which helps to understand the propagation of nonlinear waves in fiber optic systems.
文摘In this article, the fractional derivatives in the sense of the modified Riemann-Liouville derivatives together with the modified simple equation method and the multiple exp-function method are employed for constructing the exact solutions and the solitary wave solutions for the nonlinear time fractional Sharma-Tasso- Olver equation. With help of Maple, we can get exact explicit l-wave, 2-wave and 3-wave solutions, which include l-soliton, 2-soliton and 3-soliton type solutions if we use the multiple exp-function method while we can get only exact explicit l-wave solution including l-soliton type solution if we use the modified simple equation method. Two cases with specific values of the involved parameters are plotted for each 2-wave and 3-wave solutions.