Two Poisson brackets for the N-component coupled nonlinear Schrdinger(NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time...Two Poisson brackets for the N-component coupled nonlinear Schrdinger(NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time but only on the space variable. Actually it is just the usual one describing the time evolution of system in the traditional theory of integrable Hamiltonian systems. The second one is equal-space and new. It is shown that the spatial part of Lax pair with respect to the equal-time Poisson bracket and temporal part of Lax pair with respect to the equal-space Poisson bracket share the same r-matrix formulation. These properties are similar to that of the NLS equation.展开更多
水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术...水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术已在水声通信中得到广泛应用,但其性能仍受限于信道状态估计的准确性。正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术通过将数据转换到时延-多普勒域内传输,能够有效地应对水声信道中的多径效应和多普勒频移,提高通信系统的性能和可靠性。综述了OTFS在水声通信中的关键处理技术,涵盖信道估计、信道均衡及多址接入技术三个核心方面,并从天线拓展、机器学习融合及同步创新等方面探讨了未来发展趋势,同时详细分析了复杂信道环境下的信号检测、计算复杂度与实时性平衡、参数估计准确性及水下环境对数据可靠性的影响面临的技术挑战。展开更多
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。展开更多
基金Supported by National Natural Science Foundation of China under Grant Nos.11271168 and 11671177by the Priority Academic Program Development of Jiangsu Higher Education Institutionsby Innovation Project of the Graduate Students in Jiangsu Normal University
文摘Two Poisson brackets for the N-component coupled nonlinear Schrdinger(NLS) equation are derived by using the variantional principle. The first one is called the equal-time Poisson bracket which does not depend on time but only on the space variable. Actually it is just the usual one describing the time evolution of system in the traditional theory of integrable Hamiltonian systems. The second one is equal-space and new. It is shown that the spatial part of Lax pair with respect to the equal-time Poisson bracket and temporal part of Lax pair with respect to the equal-space Poisson bracket share the same r-matrix formulation. These properties are similar to that of the NLS equation.
文摘水声通信作为海洋信息传输的核心技术,广泛应用于海洋探测、海事监管及海底工程等领域。然而,水声信道因双重色散特性而极具挑战性,对系统设计构成重大障碍。尽管正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术已在水声通信中得到广泛应用,但其性能仍受限于信道状态估计的准确性。正交时频空(Orthogonal Time Frequency Space, OTFS)调制技术通过将数据转换到时延-多普勒域内传输,能够有效地应对水声信道中的多径效应和多普勒频移,提高通信系统的性能和可靠性。综述了OTFS在水声通信中的关键处理技术,涵盖信道估计、信道均衡及多址接入技术三个核心方面,并从天线拓展、机器学习融合及同步创新等方面探讨了未来发展趋势,同时详细分析了复杂信道环境下的信号检测、计算复杂度与实时性平衡、参数估计准确性及水下环境对数据可靠性的影响面临的技术挑战。
文摘针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。