Several fractionally spaced equalizers(FSE) which could be used in 60 GHz systems are presented in this paper. For 60 GHz systems, low-power equalization algorithms are favorable. We focus on FSE in both time domain(T...Several fractionally spaced equalizers(FSE) which could be used in 60 GHz systems are presented in this paper. For 60 GHz systems, low-power equalization algorithms are favorable. We focus on FSE in both time domain(TD) and frequency domain(FD) in order to meet different complexity requirements of 60 GHz systems. Compared with symbol spaced equalizer(SSE), FSE can relax the requirement of sampling synchronization hardware significantly. Extensive simulation results show that our equalization algorithms not only eliminate ISI efficiently, but are also robust to timing synchronization errors.展开更多
The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Und...The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.展开更多
An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square er...An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.展开更多
This article addresses the issue of computing the constant required to implement a specific nonparametric subset selection procedure based on ranks of data arising in a statistical randomized block experimental design...This article addresses the issue of computing the constant required to implement a specific nonparametric subset selection procedure based on ranks of data arising in a statistical randomized block experimental design. A model of three populations and two blocks is used to compute the probability distribution of the relevant statistic, the maximum of the population rank sums minus the rank sum of the “best” population. Calculations are done for populations following a normal distribution, and for populations following a bi-uniform distribution. The least favorable configuration in these cases is shown to arise when all three populations follow identical distributions. The bi-uniform distribution leads to an asymptotic counterexample to the conjecture that the least favorable configuration, i.e., that configuration minimizing the probability of a correct selection, occurs when all populations are identically distributed. These results are consistent with other large-scale simulation studies. All relevant computational R-codes are provided in appendices.展开更多
A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for...A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.展开更多
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(No.2011AA010201)National Science and Technology Major Project(No.2013ZX03005010)+1 种基金the National Natural Science Foundation of China(NSFC)(No.61371103 and No.60902025)Key Science and Technology Program of Sichuan Province of China(No.2012FZ0119 and No.2012FZ0029)
文摘Several fractionally spaced equalizers(FSE) which could be used in 60 GHz systems are presented in this paper. For 60 GHz systems, low-power equalization algorithms are favorable. We focus on FSE in both time domain(TD) and frequency domain(FD) in order to meet different complexity requirements of 60 GHz systems. Compared with symbol spaced equalizer(SSE), FSE can relax the requirement of sampling synchronization hardware significantly. Extensive simulation results show that our equalization algorithms not only eliminate ISI efficiently, but are also robust to timing synchronization errors.
基金supported by the National Natural Science Foundation of China(11361070)the Natural Science Foundation of China Medical University,Taiwan
文摘The purpose of this paper is to introduce and study the split equality variational inclusion problems in the setting of Banach spaces. For solving this kind of problems, some new iterative algorithms are proposed. Under suitable conditions, some strong convergence theorems for the sequences generated by the proposed algorithm are proved. As applications, we shall utilize the results presented in the paper to study the split equality feasibility prob- lems in Banach spaces and the split equality equilibrium problem in Banach spaces. The results presented in the paper are new.
基金Sponsored by the Nature Science Foundation of Jiangsu(BK2009410)
文摘An orthogonal wavelet transform fractionally spaced blind equalization algorithm based on the optimization of genetic algorithm(WTFSE-GA) is proposed in viewof the lowconvergence rate,large steady-state mean square error and local convergence of traditional constant modulus blind equalization algorithm(CMA).The proposed algorithm can reduce the signal autocorrelation through the orthogonal wavelet transform of input signal of fractionally spaced blind equalizer,and decrease the possibility of CMA local convergence by using the global random search characteristics of genetic algorithm to optimize the equalizer weight vector.The proposed algorithm has the faster convergence rate and smaller mean square error compared with FSE and WT-FSE.The efficiency of the proposed algorithm is proved by computer simulation of underwater acoustic channels.
文摘This article addresses the issue of computing the constant required to implement a specific nonparametric subset selection procedure based on ranks of data arising in a statistical randomized block experimental design. A model of three populations and two blocks is used to compute the probability distribution of the relevant statistic, the maximum of the population rank sums minus the rank sum of the “best” population. Calculations are done for populations following a normal distribution, and for populations following a bi-uniform distribution. The least favorable configuration in these cases is shown to arise when all three populations follow identical distributions. The bi-uniform distribution leads to an asymptotic counterexample to the conjecture that the least favorable configuration, i.e., that configuration minimizing the probability of a correct selection, occurs when all populations are identically distributed. These results are consistent with other large-scale simulation studies. All relevant computational R-codes are provided in appendices.
基金the National Natural Science Foundation of China (60072001)
文摘A modified constant modulus algorithm (MCMA) for blind channel equalization is proposed by modifying the constant modulus error function. The MCMA is compared with the conventional constant modulus algorithm (CMA) for symbol-spaced equalization of 4PSK signals. The result shows that the performance of the MCMA is superior to that of the CMA in both convergence rate and intersymbol interference for frequency selective channels in noisy environments. Simulation results using 8PSK signals also demonstrate that a fractionally spaced equalizer can preserve performance over variations in symbol-timing phase, whereas a baud-rate equalizer cannot.