The influence of the friction between deformed material and die wall during equal channel angular extrusion (ECAE) was studied. Because of the special design of the extrusion die, the direction of the frictional force...The influence of the friction between deformed material and die wall during equal channel angular extrusion (ECAE) was studied. Because of the special design of the extrusion die, the direction of the frictional force has been altered and the distribution of the strain field has been uniformed. The results of the finite element analysis(FEA) indicate that the homogeneity of the finial deformation has been greatly enhanced with this method provided. The ratio of maximum strain to minimum strain along the width is reduced from 6.39 to 1.03. Along the billet length, the strain homogeneity region increases more obviously and the strain is uniformed more greatly than that of common extrusion. The lubrication before extrusion reduces greatly or even it is ignored, which has a great significance for the industrial application of ECAE.展开更多
文摘The influence of the friction between deformed material and die wall during equal channel angular extrusion (ECAE) was studied. Because of the special design of the extrusion die, the direction of the frictional force has been altered and the distribution of the strain field has been uniformed. The results of the finite element analysis(FEA) indicate that the homogeneity of the finial deformation has been greatly enhanced with this method provided. The ratio of maximum strain to minimum strain along the width is reduced from 6.39 to 1.03. Along the billet length, the strain homogeneity region increases more obviously and the strain is uniformed more greatly than that of common extrusion. The lubrication before extrusion reduces greatly or even it is ignored, which has a great significance for the industrial application of ECAE.