期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Bio-based Epoxy Composites Demonstrating High Temperature Breakdown Strength and Thermal Conductivity for High Voltage Insulation
1
作者 Ke-Rong Yang Jin-Yue Dai +2 位作者 Shuai-Peng Wang Wei-Wei Zhao Xiao-Qing Liu 《Chinese Journal of Polymer Science》 2025年第1期40-52,I0006,共14页
The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed th... The demand for energy-efficient and environmental-friendly power grid construction has made the exploitation of bio-based electrical epoxy resins with excellent properties increasingly important.This work developed the bio-based electrotechnical epoxy resins based on magnolol.High-performance epoxy resin(DGEMT)with a double crosslinked points and its composites(Al_(2)O_(3)/DGEMT)were obtained taking advantages of the two bifunctional groups(allyl and phenolic hydroxyl groups)of magnolol.Benefitting from the distinctive structure of DGEMT,the Al_(2)O_(3)/DGEMT composites exhibited the advantages of intrinsically high thermal conductivity,high insulation,and low dielectric loss.The AC breakdown strength and thermal conductivity of Al_(2)O_(3)/DGEMT composites were 35.5 kV/mm and 1.19 W·m-1·K-1,respectively,which were 15.6%and 52.6%higher than those of petroleum-based composites(Al_(2)O_(3)/DGEBA).And its dielectric loss tanδ=0.0046 was 20.7%lower than that of Al_(2)O_(3)/DGEBA.Furthermore,the mechanical,thermal and processing properties of Al_(2)O_(3)/DGEMT are fully comparable to those of Al_(2)O_(3)/DGEBA.This work confirms the feasibility of manufacturing environmentally friendly power equipment using bio-based epoxy resins,which has excellent engineering applications. 展开更多
关键词 Bio-based epoxy composites MAGNOLOL Breakdown strength Thermal conductivity Dielectric loss
原文传递
Icing Characteristics and Anti⁃icing Research of Supercooled Large Droplet Impact on Epoxy Composite Surfaces
2
作者 LI Xiaofei WANG Xiangzhao +2 位作者 JI Zemin HUANG Xiaobin LIU Hong 《Transactions of Nanjing University of Aeronautics and Astronautics》 2025年第2期178-190,共13页
The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ... The icing characteristics of supercooled large droplet(SLD)impacting carbon fiber-reinforced composites(CFRCs)remain poorly understood,hindering the enhancement of ice protection capabilities and the certification of ice-accreted composite aircraft.The paper systematically investigates the effects of the supercooling degree,the surface temperature,and the impact velocity on the ice accretion behavior of SLDs impacting carbon fiber-reinforced epoxy composite surfaces.To address the ice-prone nature of CFRCs,nanoparticle-modified anti-icing coatings are developed,and the icing characteristics of SLD-impacted modified carbon fiber-reinforced epoxy composite surfaces are analyzed.Results demonstrate that surface-modified carbon fiber-reinforced epoxy composite exhibits significantly delayed ice formation.Under conditions of droplet temperature(−15℃)and surface temperature(−18℃),the icing time of hydrophobic-modified CFRCs was delayed by over 1100 ms,representing a 5.4-fold improvement compared to the unmodified carbon fiber-reinforced epoxy composite. 展开更多
关键词 aircraft icing carbon fiber-reinforced epoxy composites supercooled large droplets hydrophobic modification icing protection
在线阅读 下载PDF
Prediction of Water Uptake Percentage of Nanoclay-Modified Glass Fiber/Epoxy Composites Using Artificial Neural Network Modelling
3
作者 Ashwini Bhat Nagaraj N.Katagi +1 位作者 M.C.Gowrishankar Manjunath Shettar 《Computers, Materials & Continua》 2025年第11期2715-2728,共14页
This research explores the water uptake behavior of glass fiber/epoxy composites filled with nanoclay and establishes an Artificial Neural Network(ANN)to predict water uptake percentage fromexperimental parameters.Com... This research explores the water uptake behavior of glass fiber/epoxy composites filled with nanoclay and establishes an Artificial Neural Network(ANN)to predict water uptake percentage fromexperimental parameters.Composite laminates are fabricated with varying glass fiber(40-60 wt.%)and nanoclay(0-4 wt.%)contents.Water absorption is evaluated for 70 days of immersion following ASTM D570-98 standards.The inclusion of nanoclay reduces water uptake by creating a tortuous path for moisture diffusion due to its high aspect ratio and platelet morphology,thereby enhancing the composite’s barrier properties.The ANN model is developed with a 3-4-1 feedforward structure and learned through the Levenberg-Marquardt algorithm with soaking time(7 to 70 days),fiber content(40,50,and 60 wt.%)and nanoclay content(0,2,and 4 wt.%)as input parameters.The model’s output is the water uptake percentage.The model has high prediction efficiency,with a correlation coefficient(R)of 0.998 and a mean squared error of 1.38×10^(-4).Experimental and predicted values are in excellent agreement,ensuring the reliability of the ANN for the simulation of nonlinear water absorption behavior.The results identify the synergistic capability of nanoclay and fiber concentration to reduce water absorption and prove the feasibility of ANN as a substitute for time-consuming testing in composite durability estimation. 展开更多
关键词 Glass fiber epoxy composites NANOCLAY water uptake ANN
在线阅读 下载PDF
Effect of Accelerated Aging Temperature under Artificial Seawater on the Properties of Carbon Fiber/Epoxy Composites and the Erosion Mechanism 被引量:2
4
作者 XU Jinwei LU Yunfei +3 位作者 DING He DENG Zongyi SHI Minxian HUANG Zhixiong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1365-1371,共7页
In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of se... In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of seawater at different temperatures under normal pressure,and studied the aging behavior of carbon fiber/epoxy composites.The infrared spectroscopy results show that,with the increase of aging temperature,the degree of hydrolysis of the composite is greater.At the same time,after 250 days of aging of artificial seawater at regular temperature,40 and 60 ℃,the moisture absorption rates of composite materials were 0.45%,0.63%,and 1.05%,and the retention rates of interlaminar shear strength were 91%,78%,and 62%,respectively.It is shown that the temperature of the aging environment has a significant impact on the hygroscopic behavior and mechanical properties of the composite,that is,the higher the temperature,the faster the moisture absorption of the composite,and the faster the decay of the mechanical properties of the composite. 展开更多
关键词 carbon fiber/epoxy composites artificial seawater aging temperature moisture absorption mechanical properties
原文传递
Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates
5
作者 Dongmei Yao Junsheng Zheng +5 位作者 Liming Jin Xiaomin Meng Zize Zhan Runlin Fan Cong Feng Pingwen Ming 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第11期539-542,共4页
Epoxy resin-reinforced graphite composites have found extensive application as bipolar plates in fuel cells for stationary power supplies,valued for their lightweight nature and exceptional durability.To enhance the i... Epoxy resin-reinforced graphite composites have found extensive application as bipolar plates in fuel cells for stationary power supplies,valued for their lightweight nature and exceptional durability.To enhance the interfacial properties between graphite and epoxy resin(EP),surface oxidation of graphite was carried out using diverse functional groups.Experimental assessments illustrated that the composites with graphite oxide resulted in heightened mechanical strength and toughness compared to pristine graphite,which could be attributed to the excellent interface connection.Moreover,these composites displayed remarkable conductivity while simultaneously retaining their mechanical attributes.Furthermore,molecular dynamics simulations outcomes unveiled that the inclusion of oxygen-containing functional groups on the graphite surface augmented the interfacial energy with EP,and the interface morphology between graphite and resin exhibited heightened stability throughout the stretching process.This simple and effective technique presents opportunities for improving composites interfaces,enabling high load transfer efficiency,and opens up a potential path for developing strong and tough composite bipolar plates for fuel cells. 展开更多
关键词 G/EP interface strength and toughness epoxy resin-reinforced graphite composites composite bipolar plates Molecular dynamics simulations Surface oxidation of graphite
原文传递
Lightning ablation suppression of aircraft carbon/epoxy composite laminates by metal mesh 被引量:8
6
作者 F.S.Wang Y.Zhang +2 位作者 X.T.Ma Z.Wei J.F.Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2693-2704,共12页
Three-dimensional finite element(FE)models of carbon/epoxy composite laminates with copper mesh and aluminum mesh protection were established subjected to lightning strike,in which different mesh spacing was selected.... Three-dimensional finite element(FE)models of carbon/epoxy composite laminates with copper mesh and aluminum mesh protection were established subjected to lightning strike,in which different mesh spacing was selected.Effectiveness of numerical method was verified and impulse current waveforms with different current peaks were applied according to aircraft lightning zones.Thermal-electrical material parameters varying with temperature were added into numerical models.Element deletion method was used to deal with lightning ablation elements of composite structures.The results show that ablation area and depth of composite laminates with metal mesh protection are significantly smaller,which proves good protection effectiveness of metal meshes on anti-lightning strike.The denser the mesh spacing,the better the anti-lightning strike will be.Protection of composite laminates with copper mesh has better effects than that of aluminum mesh.Considering the effect of mesh spacing variation on composite structural weight and anti-lightning strike,the ideal mesh spacing was obtained. 展开更多
关键词 Lightning strike Carbon/epoxy composites Ablation Mesh protection
原文传递
Fiber-reinforced Three-dimensional Graphene Aerogels for Electrically Conductive Epoxy Composites with Enhanced Mechanical Properties 被引量:3
7
作者 Fang-Lan Guan Fei An +3 位作者 Jing Yang 李晓锋 Xing-Hua Li 于中振 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2017年第11期1381-1390,共10页
To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers, graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of... To enhance the mechanical properties of three-dimensional graphene aerogels with aramid fibers, graphene/organic fiber aerogels are prepared by chemical reduction of graphene oxide in the presence of organic fibers of poly(p-phenylene terephthalamide) (PPTA) and followed by freeze-drying. Thermal annealing of the composite aerogels at 1300℃ is adopted not only to restore the conductivity of the reduced graphene oxide component but also to convert the insulating PPTA organic fibers to conductive carbon fibers by the carbonization. The resultant graphene/carbon fiber aerogels (GCFAs) exhibit high electrical conductivities and enhanced compressive properties, which are highly efficient in improving both mechanical and electrical performances of epoxy composites. Compared to those of neat epoxy, the compressive modulus, compressive strength and energy absorption of the electrically conductive GCFA/epoxy composite are significantly increased by 60%, 59% and 131%, respectively. 展开更多
关键词 Electrical conductivity Mechanical properties Graphene aerogels epoxy composites Thermal annealing
原文传递
Preparation and 3D printing of high-thermal-conductivity continuous mesophase-pitch-based carbon fiber/epoxy composites 被引量:2
8
作者 Haiguang ZHANG Kunlong ZHAO +1 位作者 Qingxi HU Jinhe WANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第2期162-172,共11页
To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pit... To meet the requirements of spacecraft for the thermal conductivity of resins and solve the problem of low thermal conduction efficiency when 3D printing complex parts,we propose a new type of continuous mesophase-pitch-based carbon fiber/thermoplastic polyurethane/epoxy(CMPCF/TPU/epoxy)composite filament and its preparation process in this study.The composite filament is based on the high thermal conductivity of CMPCF,the high elasticity of TPU,and the high-temperature resistance of epoxy.The tensile strength and thermal conductivity of the CMPCF/TPU/epoxy composite filament were tested.The CMPCF/TPU/epoxy composites are formed by 3D printing technology,and the composite filament is laid according to the direction of heat conduction so that the printed part can meet the needs of directional heat conduction.The experimental results show that the thermal conductivity of the printed sample is 40.549 W/(m·K),which is 160 times that of pure epoxy resin(0.254 W/(m·K)).It is also approximately 13 times better than that of polyacrylonitrile carbon fiber/epoxy(PAN-CF/epoxy)composites.This study breaks through the technical bottleneck of poor printability of CMPCF.It provides a new method for achieving directional thermal conductivity printing,which is important for the development of complex high-performance thermal conductivity products. 展开更多
关键词 Thermal conductivity 3D printing Continuous mesophase-pitch-based carbon fiber(CMPCF) Thermoplastic polyurethane(TPU) epoxy composite filament
原文传递
Toughness and Fracture Mechanism of Carbon Fiber Reinforced Epoxy Composites 被引量:3
9
作者 LI Yuanyuan JI Yu +5 位作者 GU Zhiqi LI Qiuya HE Hongzhe ZHANG Yan WANG Ping SUI Jianhua 《Journal of Donghua University(English Edition)》 CAS 2022年第3期193-205,共13页
The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosil... The fracture toughness of carbon fiber reinforced epoxy composite(CFRP)was investigated through mode I and mode II shaped fracture system in this paper.A novel polyimide with trifluoromethyl groups and grafted nanosilica were used to modify epoxy resin.Effect of modified resin and unmodified resin on fracture toughness of CFRP was compared and discussed.Lay-up angles and thicknesses effects on fracture toughness of composites were also investigated.The fracture toughness of CFRP was obtained through double cantilever beam(DCB)and end notched flexure(ENF)tests.The results showed that the composites prepared by modified resin exhibited high fracture toughness compared with unmodified composites.The fracture toughness value of mode I increased from 1.83 kJ/m2 to 4.55 kJ/m2.The fracture toughness value of mode II increased from 2.30 kJ/m2 to 6.47 kJ/m2. 展开更多
关键词 fracture toughness carbon fiber reinforced epoxy composite(CFRP) mixed modification laying angle
在线阅读 下载PDF
Electrical and optical properties of indium tin oxide/epoxy composite film 被引量:1
10
作者 郭霞 郭春威 +1 位作者 陈宇 苏治平 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期601-604,共4页
The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the v... The electrical and optical properties of the indium tin oxide (ITO)/epoxy composite exhibit dramatic variations as functions of the ITO composition and ITO particle size. Sharp increases in the conductivity in the vicinity of a critical volume fraction have been found within the framework of percolation theory. A conductive and insulating transition model is extracted by the ITO particle network in the SEM image, and verified by the resistivity dependence on the temperature. The dependence of the optical transmittance on the particle size was studied. Further decreasing the ITO particle size could further improve the percolation threshold and light transparency of the composite film. 展开更多
关键词 percolation effect indium tin oxide/epoxy composite film electrical state transition optical transmittance
原文传递
Comparative Study of Micro and Nano Size WO3/E44 Epoxy Composite as Gamma Radiation Shielding Using MCNP and Experiment 被引量:1
11
作者 Shahryar Malekie Nahid Hajiloo 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期92-94,共3页
The radiation shielding characteristics of 50wt% WO3/E44 epoxy composite in various gamma energies from 80 keV to 1.33 MeV are investigated via the MCNP code. Thus two scales are considered for WOa filler particles: ... The radiation shielding characteristics of 50wt% WO3/E44 epoxy composite in various gamma energies from 80 keV to 1.33 MeV are investigated via the MCNP code. Thus two scales are considered for WOa filler particles: micro and nano with sizes of i #m and 5Onto, respectively. The simulation results show that W03 nano particles exhibit a larger increase in linear attenuation coefficient in comparison with micro size particles. Finally, validation of simulation results with the published experimental data shows a good agreement. 展开更多
关键词 Comparative Study of Micro and Nano Size WO3/E44 epoxy composite as Gamma Radiation Shielding Using MCNP and Experiment
原文传递
Wear Displayed by the Scratch of Epoxy Composites Filled by Metallic Particles under the Influence of Magnetic Field 被引量:1
12
作者 F. I. El-Zahraa G. T. Abdel-Jaber +1 位作者 M. I. Khashaba W. Y. Ali 《Materials Sciences and Applications》 2016年第2期119-127,共9页
The tribological performance of the sliding bearings which are probably made of polymers, which is subjected to magnetic field, is of great intense. The wear of epoxy composites filled by metallic particles such as ir... The tribological performance of the sliding bearings which are probably made of polymers, which is subjected to magnetic field, is of great intense. The wear of epoxy composites filled by metallic particles such as iron, copper and aluminum scratched by steel indenter is investigated. The wear scar width of the scratch was measured by an optical microscope. It was found that wear displayed by the scratch of epoxy filled by the metallic filling materials such as iron, copper and aluminum increased with increasing applied load. As the content of the metallic filling materials increased, wear slightly increased due to the reduction in cohesive stress inside the matrix as well as the epoxy transfer into the indenter surface might be responsible for that behavior. For epoxy filled by iron, when the magnetic field was applied to the contact area wear significantly decreased. Increasing the intensity of the magnetic field showed slight wear increase. Wear displayed by the scratch of epoxy filled by copper showed higher values than that observed for copper filled epoxy. Presence of the magnetic field might generate electric current at the contact area leading to an increase in the intensity of the electric static charge. Moreover, wear of epoxy filled by aluminum showed lower values than that observed for epoxy composites filled by copper and higher than that displayed by iron filled epoxy composites. Under the effect of magnetic field, wear significantly increased. This behavior could explained on the basis that the presence of magnetic field accompanied by the movement of the indenter in the epoxy composites generated electric current passing through the steel indenter which caused softening of the epoxy composites. In that condition removal of epoxy from the wear track was easier and epoxy transfer into the steel indenter was accelerated. 展开更多
关键词 WEAR epoxy composites IRON Copper ALUMINUM Magnetic Field SCRATCH
在线阅读 下载PDF
Value-Added Utilization of Agro-Waste Derived Oil Palm Ash in Epoxy Composites
13
作者 Samsul Rizal Fizree.H.M +7 位作者 Chaturbhuj K.Saurabh Deepu A.Gopakumar N.A.Sri Aprilia D.Hermawan A.Banerjee Fazita M.R.M Haafiz M.K.M Abdul Khalil H.P.S 《Journal of Renewable Materials》 SCIE 2019年第12期1269-1278,共10页
Oil palm ash(OPA)is an agro-industry waste and it has disposable problems.In the present study,an effort was made for value addition to OPA by incorporating it as a micro-filler in different concentration(0,10,20,30,4... Oil palm ash(OPA)is an agro-industry waste and it has disposable problems.In the present study,an effort was made for value addition to OPA by incorporating it as a micro-filler in different concentration(0,10,20,30,40,and 50%)and sizes(100,200,and 300 mesh size particles)in the epoxy matrix.Prepared micro OPA was having a crystallinity index of 65.4%,high inorganic elements,and smooth surface morphology.Fabricated composites had higher void content as compared to neat epoxy matrix.Mechanical properties of fabricated composites had a maximum value at 30%loading of 300 mesh-size filler due to its low void content and size as compared to filler of 100 and 200 mesh size.Further increase in the concentration of OPA filler after 30 wt%of loading leads to the agglomeration of OPA microparticles and thereby resulted in the reduction of mechanical characteristics such as tensile strength,tensile modulus,flexural strength and flexural modulus of the composites.However,elongation at break decreased with increase in filler content at all percentage.Thermal stability and char residue percentage of composite increased with the concentration of filler at all percentage.Surface morphology of composite showed that OPA incorporation lead towards its roughness and cracks were originated from the site of OPA embedded in the epoxy matrix.The 300 mesh-size particles were having the best effect on composite as compared to 100 and 200 mesh-size filler. 展开更多
关键词 Oil palm ash micro filler epoxy composite
在线阅读 下载PDF
Preparation and Mechanical Properties of Bionic Carbon Fiber/Epoxy Resin Composites Inspired by Owl Feather 被引量:1
14
作者 Zerun Yu Jiaan Liu +2 位作者 Tian Yang Linyang Zhang Chunhua Hu 《Journal of Bionic Engineering》 2025年第1期282-292,共11页
Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are kn... Insufficient interfacial activity and poor wettability between fibers and matrix are the two main factors limiting the improvement of mechanical properties of Carbon Fiber Reinforced Plastics(CFRP).Owl feathers are known for their unique compact structure;they are not only lightweight but also strong.In this study,an in-depth look at owl feathers was made and it found that owl feathers not only have the macro branches structure between feather shafts and branches but also have fine feather structures on the branches.The presence of these fine feather structures increases the specific surface area of the plume branches and allows neighboring plume branches to hook up with each other,forming an effective mechanical interlocking structure.These structures bring owl feathers excellent mechanical properties.Inspired by the natural structure of owl feathers,a weaving technique and a sizing process were combined to prepare bionic Carbon Fiber(CF)fabrics and then to fabricate the bionic CFRP with structural characteristics similar to owl feathers.To evaluate the effect of the fine feather structure on the mechanical properties of CFRP,a mechanical property study on CFRP with and without the fine feather imitation structure were conducted.The experimental results show that the introduction of the fine feather branch structure enhance the mechanical properties of CFRP significantly.Specifically,the tensile strength of the composites increased by 6.42%and 13.06%and the flexural strength increased by 8.02%and 16.87%in the 0°and 90°sample directions,respectively.These results provide a new design idea for the improvement of the mechanical properties of the CFRP,promoting the application of CFRP in engineering fields,such as automotive transportation,rail transit,aerospace,and construction. 展开更多
关键词 Carbon fiber reinforced epoxy composites Owl feather Bionic feather structure Mechanical properties
在线阅读 下载PDF
Physical, Thermal and Mechanical Characterization of Epoxy/Rafia Vinifera Woven Composite Materials: Application to the Comfort of Boats in Tropical Areas
15
作者 Alfred Kendem Djoumessi Nicodème Rodrigue Sikame Tagne +3 位作者 Elvis Mbou Tiaya Augustine Demze Nitidem François Ngapgue Ebenezer Njeugna 《Journal of Materials Science and Chemical Engineering》 2025年第2期1-22,共22页
The mechanical, physical and thermal characterization of a composite made from woven raffia fiber vinifiera molded in epoxy resin intended for shipbuilding shows that the density (0.5 g/cm3 with a relative error of 0.... The mechanical, physical and thermal characterization of a composite made from woven raffia fiber vinifiera molded in epoxy resin intended for shipbuilding shows that the density (0.5 g/cm3 with a relative error of 0.05 g/cm3) of the composite produced is lower than that of wood used in this field. The material has low porosity (9.8%) and is less absorbent (12.61%) than wood. The result of the thermal conductivity test by the hot plane method shows that this composite can contribute to the internal thermal insulation (an example of thermal conductivity is 0.32W/m.K) of floating boats. The mechanical tests of compression (young modulus is 22.86 GPa), resilience (1.238 J/Cm2) and hardness (233.04 BH30-2.5/187.5-15s) show that this composite is much harder and more absorbent than many wood and bio-composite materials used in the construction of pleasure boats. The abrasion test (0.005349) shows that this composite could well resist friction with the beach. 展开更多
关键词 Density THERMAL RESILIENCE Hardness ABRASION Raffia/epoxy composite
在线阅读 下载PDF
Fabrication of insulation spacers for ultra-high voltage gasinsulated switchgear using eco-friendly bio-based epoxy composite material characterisation evaluation
16
作者 Chanyong Lee Yohan Noh +1 位作者 Hangoo Cho Jaehyeong Lee 《High Voltage》 2025年第2期451-457,共7页
In the electric power equipment industry,various insulating materials and accessories are manufactured using petroleum-based epoxy resins.However,petrochemical resources are gradually becoming limited.In addition,the ... In the electric power equipment industry,various insulating materials and accessories are manufactured using petroleum-based epoxy resins.However,petrochemical resources are gradually becoming limited.In addition,the global surge in plastic usage has consistently raised concerns regarding greenhouse gas emissions,leading to worsening global warming.Therefore,to facilitate eco-friendly policies,industrialising epoxy systems applicable to high-pressure components using bio-based epoxy composites is essential.The results of the characterisation conducted in this research regarding bio-content were confirmed through thermogravimetric analysis and differential scanning calorimetry,which showed that as the bio-content increased,the thermal stability improved.Considering the operating temperature of 105℃ for the insulation spacer,structurally,no issues would be encountered if the spacer was manufactured with a bio-content of 20%(bio 20%).Subsequent tensile and flexural strength measurements revealed mechanical properties equivalent to or better than those of their petroleum-based counterparts.The impact strength tended to decrease with increasing bio-content.Analysing the dielectric properties confirmed that the epoxy composite containing 20%biomaterial is suitable for manufacturing insulation spacers.Subsequently,a series of tests conducted after spacer fabrication confirmed the absence of internal metals and bubbles with no external discolouration or cracks observed. 展开更多
关键词 insulation spacers bio based epoxy composite thermogravimetric analysis epoxy systems insulating materials ultra high voltage gas insulated switchgear greenhouse gas emissionsleading
在线阅读 下载PDF
Interface Engineering for Synergistic Achievement of Enhanced Thermal Conductivity and Suppressed Dielectric Loss of Epoxy/Boron Nitride Composite
17
作者 Tengteng Niu Zhi Zhang +1 位作者 Qiyuan Yi Ying Yang 《High Voltage》 2025年第5期1073-1082,共10页
Interface design for synergistic improvement of the thermal conductivity and dielectric properties of dielectrics is urgently needed but still challenging for the next generation of electronic and electrical equipment... Interface design for synergistic improvement of the thermal conductivity and dielectric properties of dielectrics is urgently needed but still challenging for the next generation of electronic and electrical equipment development.Herein,the authors report a strategy to screen structural units for the interface design of polymer dielectrics working under high-frequency and high-voltage conditions.Thermal conductivity,dielectric loss,the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)gap are employed as key parameters to be considered simultaneously in the interface design for the screening.The authors find that a rigid ring with hydroxyl groups at symmetric sites can suppress the steric hindrance of neighbouring hydrogen bonds,leading to a better phonon spectrum matching and more efficient suppression of molecular chain segment motion,which ensures the dielectric insulating performance and thermal conduction performance simultaneously.Typically,alkyl polyglucoside(APG)was selected as the optimal modifier to demonstrate the interface designing principle experimentally,exhibiting improved thermal conductivity and suppressed dielectric loss,ultimately resulting in a 4.98-fold increase in the high-frequency breakdown time.This study provides important insights into decisive structural factors necessary to achieve dielectrics with excellent insulating properties under high-frequency applications. 展开更多
关键词 screen structural units thermal conductivity dielectric properties synergistic improvement thermal conductivity dielectric loss polymer dielectrics interface design epoxy boron nitride composite
在线阅读 下载PDF
Preparation and Properties of Fire-retardant Epoxy Resin Containing an Environmentally Friendly Bio-based CS@SA@ZIF-67 Core-shell Nano-hybrid
18
作者 Nan Xu Guo-Fang Qiu +4 位作者 Li-Ping Jin Chen-Peng Ji Cong-Ke Gu Ling-Xin He Wen-Wen Guo 《Chinese Journal of Polymer Science》 2025年第5期828-836,共9页
In this study,a novel CS@SA@ZIF-67 core-shell nano-hybrid was synthesized using zeolitic imidazole framework-67(ZIF-67)as a template and CS@SA@ZIF-67 as a modifier.Then,flame-retardant nanocomposites(EP/CS@SA@ZIF-67)w... In this study,a novel CS@SA@ZIF-67 core-shell nano-hybrid was synthesized using zeolitic imidazole framework-67(ZIF-67)as a template and CS@SA@ZIF-67 as a modifier.Then,flame-retardant nanocomposites(EP/CS@SA@ZIF-67)were obtained by combining the hybrid with epoxy resins.The microstructure and morphology of CS@SA@ZIF-67 and the residual chars were explored using Fourier transform infrared(FTIR),scanning electron microscopy(SEM),and X-ray diffraction(XRD),and the effect of the obtained hybrid materials on the fire performance of the epoxy resins was characterized.Compared with the flame retardant system composed of ZIF-67 and pure EP,the hybrid flame retardant composites exhibited low total heat release and smoke production.The thermogravimetric analysis(TGA)results showed that the maximum thermal decomposition temperature of the EP/CS@SA@ZIF-67 based composite coating was stabilized at the highest value(378.2 and 563.9℃)so that the introduction of CS@SA@ZIF-67 could improve the thermal properties of the EP/CS@SA@ZIF-67 composites to a certain extent.Meanwhile,the cone test results indicated that the peak heat release rate pHRR of the CS@SA@ZIF-67 filled EP composite was reduced by 18.43%compared to that of pure EP,implying enhanced flame retardancy.The enhanced thermal stability and flame retardancy of the CS@SA@ZIF-67 composites were mainly ascribed to the catalytic effect and carbonization ability of CS@SA@ZIF-67. 展开更多
关键词 Metal organic framework(ZIF-67) Core-shell microspheres epoxy resin composites Flame retardant Smoke suppressant
原文传递
Tribological properties of short carbon fibers reinforced epoxy composites 被引量:6
19
作者 Nay Win KHUN He ZHANG +3 位作者 Lee Hoon LIM Chee Yoon YUE Xiao HU Jinglei YANG 《Friction》 SCIE EI CAS 2014年第3期226-239,共14页
Short carbon fiber(SCF)reinforced epoxy composites with different SCF contents were developed to investigate their tribological properties.The friction coefficient and wear of the epoxy composites slid in a circular p... Short carbon fiber(SCF)reinforced epoxy composites with different SCF contents were developed to investigate their tribological properties.The friction coefficient and wear of the epoxy composites slid in a circular path against a steel pin inclined at 45°to a vertical axis and a steel ball significantly decreased with increased SCF content due to the solid lubricating effect of SCFs along with the improved mechanical strength of the composites.The scanning electron microscope(SEM)observation showed that the epoxy composites had less sensitive to surface fatigue caused by the repeated sliding of the counterparts than the epoxy.The tribological results clearly showed that the incorporation of SCFs was an effective way to improve the tribological properties of the epoxy composites. 展开更多
关键词 epoxy composite short carbon fiber FRICTION WEAR
原文传递
Experimental investigation and prediction of tribological behavior of unidirectional short castor oil fiber reinforced epoxy composites 被引量:5
20
作者 Rajesh EGALA G V JAGADEESH Srinivasu Gangi SETTI 《Friction》 SCIE EI CAS CSCD 2021年第2期250-272,共23页
The present study aims at introducing a newly developed natural fiber called castor oil fiber,termed ricinus communis,as a possible reinforcement in tribo-composites.Unidirectional short castor oil fiber reinforced ep... The present study aims at introducing a newly developed natural fiber called castor oil fiber,termed ricinus communis,as a possible reinforcement in tribo-composites.Unidirectional short castor oil fiber reinforced epoxy resin composites of different fiber lengths with 40%volume fraction were fabricated using hand layup technique.Dry sliding wear tests were performed on a pin-on-disc tribometer based on full factorial design of experiments(DoE)at four fiber lengths(5,10,15,and 20 mm),three normal loads(15,30,and 45 N),and three sliding distances(1,000,2,000,and 3,000 m).The effect of individual parameters on the amount of wear,interfacial temperature,and coefficient of friction was studied using analysis of variance(ANOVA).The composite with 5 mm fiber length provided the best tribological properties than 10,15,and 20 mm fiber length composites.The worn surfaces were analyzed under scanning electron microscope.Also,the tribological behavior of the composites was predicted using regression,artificial neural network(ANN)-single hidden layer,and ANN-multi hidden layer models.The confirmatory test results show the reliability of predicted models.ANN with multi hidden layers are found to predict the tribological performance accurately and then followed by ANN with single hidden layer and regression model. 展开更多
关键词 natural fiber castor oil fiber epoxy composite full factorial design of experiments(DoE) analysis of variance(ANOVA) PREDICTION regression artificial neural network(ANN)
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部