In this study,epoxidized soybean oil(ESO)and ricinoleic acid(RA)were used to synthesize polyol esters,designated ESO-RA(ER)resin.The esters were further crosslinked with 4,4-diphenylmethane diisocyanate(PMDI)to create...In this study,epoxidized soybean oil(ESO)and ricinoleic acid(RA)were used to synthesize polyol esters,designated ESO-RA(ER)resin.The esters were further crosslinked with 4,4-diphenylmethane diisocyanate(PMDI)to create a biodegradable flame-retardant thermoset foam,referred to as ESO-RA-PMDI(ERP)foam,using water as a foaming agent.Additionally,flame retardants such as triethyl phosphate(TEP)and expanded graphite(EG)have been combined for foam preparation without the need for catalysts or foaming agents.The study findings showed that the incorporation of TEP and EG diminished the pulverization ratio while augmenting the compressive strength and shore hardness.Furthermore,the ERP foam exhibited exceptional flame retardant characteristics,as evidenced by a reported limiting oxygen index(LOI)value of 30.6vol%.A peak heat release rate of 97.12 kW/m^(2)was reported during the fire test.Significantly,a low peak smoke production rate(pSPR)of 0.026m^(2)/s and a total smoke production(TSP)of 0.62 m^(2)were achieved.In addition,ERP foam exhibited exceptional ultraviolet(UV)resistance,thermal insulation,and biodegradability.After 60 days of exposure to Penicillium sp.,foam containing both TEP and EG exhibited a mass loss of 9.39%,indicating that the incorporation of flame retardants did not negatively impact its biodegradability.展开更多
A novel epoxidized soybean oil-toughened-phenolic resin(ESO-T-PR)has been synthesized by etheri- fication graft and multi-amine curing ESO.Fourier transform infrared spectroscopy(FTIR)was adopted to investi- gate its ...A novel epoxidized soybean oil-toughened-phenolic resin(ESO-T-PR)has been synthesized by etheri- fication graft and multi-amine curing ESO.Fourier transform infrared spectroscopy(FTIR)was adopted to investi- gate its molecular structure and scan electron microscope(SEM)was used to observe the micro morphology of its impact fracture surface.This ESO-T-PR was adopted as the matrix resin to prepare paper copper clad laminate (P-CCL)and the properties of resulting P-CCL are found superior to the related Chinese National Standard.The toughing mechanism was investigated by comparing the impact strength,solderleaching resistance,flexural strength, peeling strength and morphology of this ESO-T-PR with those of other two ESO modified phenolic resins.It is demonstrated that during the synthesizing process of ESO-T-PR,the phenol hydroxyl is etherified by ESO or ESO epoxy resin prepolymer(ESO chain extension polymer)and the long ESO epoxy resin chain segments enhance the crosslink density of ESO-T-PR and consequently improve the impact toughness and solderleaching resistance of P-CCL made of ESO-T-PR.The ESO-T-PR is a cheap matrix resin with excellent properties to make P-CCL(elec- tric guide board).展开更多
Here,we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres.The composite was prepared either completely binder-less or bonded with 10%(w/w)of a bio-based resin whi...Here,we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres.The composite was prepared either completely binder-less or bonded with 10%(w/w)of a bio-based resin which was a mixture of an epoxidized linseed oil and a tall-oil based polyamide.The flexural modulus of elasticity,the flexural strength and the water absorption of hot pressed Typha panels were measured and the influence of pressing time and panel density on these properties was investigated.The cure kinetics of the biobased resin was analyzed by differential scanning calorimetry(DSC)in combination with the iso-conversional kinetic analysis method of Vyazovkin to derive the curing conditions required for achieving completely cured resin.For the binderless Typha panels the best technological properties were achieved for panels with high density.By adding 10%of the binder resin the flexural strength and especially the water absorption were improved significantly.展开更多
This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear visc...This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear viscosity, and melt strength of the blends. PLA was blended by the twin-screw plastic extruder at five mass fractions: 3%, 6%, 9%, 12%, and 15% (based on PLA mass). Melt flow index (MFI) was examined with a melt flow indexer. The results indicate that the blends of PLA/ESO had higher MFI than pure PLA, except for MFI at 9% reaching to the lowest point, even lower than that of pure PLA. Melt rheological properties were studied by a capillary rheometer in a temperature range of 160-180℃. The blends exhibited shear-thinning behavior and the apparent shear viscosity was well described by the power law in this shear rate region. The melt strength of PLA plasticized with 6% ESO reached the maximums. ESO was more effective in increasing the melt strength at the mass fractions less than 6%, which could toughen the blends to some extent. Therefore, the authors suggested the optimum addition level of 6%-9% ESO will get good melt rheological performance balance.展开更多
A novel kind of fully bio-based PSAs we re obtained through the curing reaction between two components derived from the plant oils:carboxyl-terminated polyricinoleate(PRA) fro m the castor oil and epoxidized soybean o...A novel kind of fully bio-based PSAs we re obtained through the curing reaction between two components derived from the plant oils:carboxyl-terminated polyricinoleate(PRA) fro m the castor oil and epoxidized soybean oil(ESO).The get content,glass transition temperature(Tg),rheological behavior,tensile strength,creep resistance and 180° peel strength of the PSAs were feasibly tailored by adjusting the component ratio of ESO to PRA.At low cross-linking level,the PSAs behaved like a viscous liquid and did not possess enough cohesiveness to sustain the mechanical stress during peeling,The PSAs cross-linked at or near the optimal stoichiometric conditions displayed an adhesive(interfacial) failure between the substrate and the adhesive layer,which were associated with the lowest adhesion levels.The PSAs with the dosage amount of ESO ranging from 10.20 wt% were tacky and flexible,which exhibited 1800 peel strength ranging from 0.4~2.3 N/cm;and could be easily removed without any residues on the adherend.The process for the preparation of the fully bio-based PSAs was environmentally friendly without using any orga nic solve nt or other toxic chemical,herein showing the great potential as sustainable materials.展开更多
The novel epoxidized soybean oil-modified-phenolic resin/clay nanocomposites(ESO-M-PR/ CN) was prepared. The coupling agent-benzyldimethylphenylammonium chloride [C6H5CH2N^+(CH3)2C6H5Cl^- , B2MP] was adopted to m...The novel epoxidized soybean oil-modified-phenolic resin/clay nanocomposites(ESO-M-PR/ CN) was prepared. The coupling agent-benzyldimethylphenylammonium chloride [C6H5CH2N^+(CH3)2C6H5Cl^- , B2MP] was adopted to modify the interface between the organic and inorganic phases. The effect of the nanocomposite structure on its physical and chemical properties was discussed. During the synthesizing process of ESO-M-PR/CN, the phenol hydroxyl was etherified by ESO or ESO epoxy resin prepolymer to provide long ESO epoxy segments. Long ESO epoxy resin chain segments enhanced the crosslink density of ESO-M- PR/CN. The thermal and mechanical properties exhibit a significant improvement. The temperature at which a weight loss of 5% occurs increases from 287.1 ℃ to 402.3 ℃. The flexural strength increases by 25%, while the flexural modulus increases by 39%. Moreover, the properties of resin were enhanced by the effect of the inorganic nanoparticles, while the size of the nanomontmorillonites in the phenolic resin was characterized with a scanning electron microscope. The particle size of inorganic montmorillonites in the modified system is less than 100 nm.展开更多
Biodiesel was used to prepare epoxidized fatty acid isobutyl esters(Ep-FABEs)as a biobased plasticizer in this work.Transesterification of biodiesel with isobutanol catalyzed by tetrabutyl titanate was carried out in ...Biodiesel was used to prepare epoxidized fatty acid isobutyl esters(Ep-FABEs)as a biobased plasticizer in this work.Transesterification of biodiesel with isobutanol catalyzed by tetrabutyl titanate was carried out in a gas-liquid tower reactor.The conversion achieved nearly 100%within 5 h under the reaction temperature,the mass ratio of catalyst to fatty acid methyl esters(FAMEs),and isobutanol to FAMEs total molar ratio of 180℃,0.4%(mass),and 5.4:1,respectively.In addition,kinetic model of the transesterification reaction was developed at 150–190℃.The calculated activation energy was 48.93 kJ·mol^(-1).Then,the epoxidation of obtained fatty acid isobutyl esters(FABEs)was conducted in the presence of formic acid and hydrogen peroxide.The Ep-FABEs was further analyzed for its plasticizing effectiveness to replace dioctyl phthalate(DOP)and compared with conventional epoxy plasticizer epoxidized fatty acid methyl esters(Ep-FAMEs).The results indicated that the thermal stability and mechanical properties of PVC films with Ep-FABEs plasticizer were significantly improved compared with those plasticized with DOP.In addition,the extraction resistance and migration stability of Ep-FABEs were better than those of EpFAMEs.Overall,the prepared Ep-FABEs via structural modification of biodiesel proved to be a promising biobased plasticizer.展开更多
In this work,Epoxidized natural rubber/sawdust short fiber(ENR-50/SD)composites at different fiber content(5,10,15 and 20 phr)and size(fine size at 60–100μm and coarse size at 10–20 mm)were prepared using two-roll ...In this work,Epoxidized natural rubber/sawdust short fiber(ENR-50/SD)composites at different fiber content(5,10,15 and 20 phr)and size(fine size at 60–100μm and coarse size at 10–20 mm)were prepared using two-roll mill and electrical-hydraulic hot press machine respectively.Curing characteristics,water uptake,tensile,morphological,physical,and thermal properties of the composites were investigated.Results indicated that the scorch time and cure time became shorter whereas torque improved as SD content increase.Though the decline of tensile strength and elongation at break values,modulus,hardness and crosslinking density have shown enhancements with the increasing of SD content.The water uptake percentage of all samples has shown an increasing as SD content increase.However,the low SD content,particularly fine size have presented lower water uptake.The temperature of weight%loss(5 and 50 wt%loss)of 5 phr SD(low content)have recorded higher temperature compared to 20 phr SD(high content)in the rubber composites,which indicated higher thermal stability.The fine size of SD has recorded better overall properties than SD coarse size at same loading in the rubber composites.展开更多
The natural rubber (NR) was mixed with chlorosulfonated polyethylene (CSM), due to the difference of polarity in NR and CSM made this blend incompatible and the third component was used. Epoxidzed natural rubber (ENR)...The natural rubber (NR) was mixed with chlorosulfonated polyethylene (CSM), due to the difference of polarity in NR and CSM made this blend incompatible and the third component was used. Epoxidzed natural rubber (ENR) was used as a third component. NR/CSM blended with the blend ratio of 50/50 was prepared by using a two-roll mill and vulcanization in a compression mold at 160°C. The ENR content was varied from 1 to 7 phr. The curing characteristics, morphology, mechanical properties, and automotive fuel swelling were investigated. The results indicated that the cure time of the blend rubbers was shorter as adding ENR. The mechanical properties of the blend rubbers were not affected by ENR content. However, automotive fuel resistance of the blend rubbers was found to increase with adding ENR in rubber blend.展开更多
This article reports the production of electrospun fibers from blends of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) solutions. The produced fibers were characterized by scanning electron microscopy (S...This article reports the production of electrospun fibers from blends of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) solutions. The produced fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). SEM images showed the reduction in fiber size with ENR content of up to 25% in the mixture PLA/ENR. FTIR analysis revealed a possible interaction between carboxylic group of PLA and epoxi group of ENR. Thermal analysis showed the increase of the crystallinity fraction with ENR content and a decrease in thermal stability of eletrospun mats with the addition of ENR. The dynamic mechanical properties showed an enhancement of the stiffness of PLA/ENR blends with the increase of ENR content, which can support the production of interesting materials for tissue engineering based on renewable and biocompatible polymers. The reported properties indicate the possibility to use such fiber mats as potential materials in tissue engineering.展开更多
In this work, free tall oil fatty acids were epoxidized with in-situ generated peroxyacetic acid. Reaction kineticsof epoxidation was investigated by oxirane content and iodine value titrimetric determination, as well...In this work, free tall oil fatty acids were epoxidized with in-situ generated peroxyacetic acid. Reaction kineticsof epoxidation was investigated by oxirane content and iodine value titrimetric determination, as well as FTIRspectra analysis. A highly functional biobased polyol was synthesized by functionalizing epoxidized tall oilfatty acids with triethanolamine using Montmorillonite K10 as a catalyst. The obtained polyol was analyzed byFTIR and MALDI-TOF MS. The most common chemical and physical characteristics of obtained polyol weredetermined.展开更多
The global scenario on PVC plasticizer is experiencing a drastic change from petroleum-based,toxic di-(2-ethylhexyl)phthalate(DEHP)toward renewable,non-toxic bio-alternatives.However,replacing diisodecyl phthalate(DID...The global scenario on PVC plasticizer is experiencing a drastic change from petroleum-based,toxic di-(2-ethylhexyl)phthalate(DEHP)toward renewable,non-toxic bio-alternatives.However,replacing diisodecyl phthalate(DIDP),a DEHP analogue specifically intended for plasticizing PVC automotive upholstery,with bio-alternative remains a challenge as few bio-plasticizer volatilizes from PVC as slowly as DIDP,a crucial aspect compulsorily required by automotive industry.Here,we demonstrate that covalently attaching two short esters at theα-position of all components of a traditional epoxidized fatty acid methyl ester via a two-step,hydrogen-to-ester nucleophilic substitution in a one-pot procedure yields an epoxidized fatty acid tri-ester bio-plasticizer with remarkably suppressed volatilization from PVC,and hence an extremely low fogging value comparable to DIDP.With this strategy in hand,DIDP,long deemed irreplaceable despite its toxicity and non-renewable nature,may ultimately be phased out.展开更多
A novel phosphorous-containing acrylated epoxidized soybean oil-based(P-AESO)resin was developed via the ring-opening reaction of epoxidized soybean oil(ESO)with diphenylphosphinic chloride(DPPC),followed by acrylatio...A novel phosphorous-containing acrylated epoxidized soybean oil-based(P-AESO)resin was developed via the ring-opening reaction of epoxidized soybean oil(ESO)with diphenylphosphinic chloride(DPPC),followed by acrylation of the resulting groups.The chemical structure was characterized by Fourier transform infrared spectroscopy(FT-IR),and ^(1)H nuclear magnetic resonance(^(1)H NMR).Subsequently,the viscosity and volumetric shrinkage of the obtained P-AESO resins were studied.Then the oligomer was formulated into UV-curable coatings,and the mechanical,thermal,and coating properties of the resulting UV-cured bioresins were studied by tensile testing,dynamic mechanical thermal analysis(DMA),thermogravimetric analysis(TGA)coupled with FT-IR spectroscopy(TGA-FT-IR),hardness,adhesion,pencil hardness and chemical resistance.Furthermore,the UV-curing behavior of the P-AESO resin was determined by real-time realtime infrared(RT-IR).Meanwhile,compared with coating from acrylated epoxidized soybean oil(AESO),the P-AESO system coatings showed better volumetric shrinkage,excellent adhesion,and enhanced thermal and glass transition temperature(Tg)while maintaining reasonably final C=C conversions and cross-link density.For instance,the obtained P-AESO/trimethylolpropanetriacrylate(TMPTA)20 material possessed a volumetric shrinkage of 4.1%,Tg of 115.6℃,char yield of 9.47%,and final C=C conversions of 81.4%respectively,which exhibited superior values than that of the AESO/TMPTA20 material.The improvement of the P-AESO coating performances could contribute to the architectures that combined the structural features of phosphorous-containing rigid benzene.The developed P-AESO resin is promising for applications in the UV-curable coatings.展开更多
Although various shape memory polymers(SMPs)or diverse applications have been widely reported,the SMPs based on rubbers have been rarely realized due to the low triggering temperature of rubbers.In another aspect,the ...Although various shape memory polymers(SMPs)or diverse applications have been widely reported,the SMPs based on rubbers have been rarely realized due to the low triggering temperature of rubbers.In another aspect,the SMPs based on sustainable substances are highly desired for the growing shortage in fossil resources.In the present study,we accordingly developed the sustainable SMPs with tunable triggering temperature,based on natural rubber(NR)and ferulic acid(FA)as the raw materials.Specifically,the SMPs are based on a crosslinked network of epoxidized natural rubber(ENR)crosslinked by in situ formed zinc ferulate(ZDF)via oxa-Michael reaction.The excellent shape memory effect(SME)is found in these SMPs,as evidenced by the high fixity/recovery ratio and the tunable triggering temperature.With the incorpora-tion of natural halloysite nanotubes(HNTs),the stress and recovery rate of the SMPs are found to be tunable,which widens the application of this kind of SMPs.The combination of adoption of sustainable raw materials,and the excellent and tunable SME makes these SMPs potentially useful in many applications,such as various actuators and heat-shrinkable package materials.展开更多
Processing polyvinyl chloride(PVC)artificial material requires plasticizer that softens the PVC coating.Currently,utilizing unsaturated fatty acid methyl esters to obtain epoxidized fatty acid methyl ester(EFAME)bio-p...Processing polyvinyl chloride(PVC)artificial material requires plasticizer that softens the PVC coating.Currently,utilizing unsaturated fatty acid methyl esters to obtain epoxidized fatty acid methyl ester(EFAME)bio-plasticizers constitutes an environmentally responsible solution to substitute conventional ortho-phthalates that are endocrine disruptors or probable carcinogens.However,commercial EFAMEs,even with the highest epoxy value(ca.5.5-5.8%)so far,still suffer from fast leaching from the PVC matrix,burdening the environment and shortening lifespan of the artificial material.Here,we report a proof-of-principle demonstration of a new strategy to obtain migration-resistant EFAME that harnesses the midchain hydroxyl of methyl ricinoleate and covalently attachment of a pendant acetate ester.Despite a low epoxy value(3.0%),the engineered bio-plasticizer displays significantly suppressed migration in multiple scenarios compared with one conventional EFAME with much higher epoxy value(5.8%).Circumventing the limit confronting previous strategy that highlights the sole contribution of epoxy value to achievable migration resistance,the rationale herein may provide guidance for designing new EFAMEs with comparable performance to ortho-phthalates,thus bringing the old and oft-maligned PVC artificial material industry one step closer to sustainability.展开更多
In this work, polyester polyols with high weight average molecular weight (Mw) (Mw= 10000-15000) were prepared from epoxidized palm olein (EPOo) and a series of dicarboxylic acids (C6-C12) at elevated temperat...In this work, polyester polyols with high weight average molecular weight (Mw) (Mw= 10000-15000) were prepared from epoxidized palm olein (EPOo) and a series of dicarboxylic acids (C6-C12) at elevated temperature under non-catalyzed condition. The optimal reaction conditions were determined as 180 ℃ for 4 h. Longer carbon chain length of dicarboxylic acids was more reactive when reacted with EPOo. The physical appearance of the product was observed as liquid at room temperature. This palm oil-based polyester polyol is proposed as starting material for flexible polyurethane. For reaction monitoring purposes, FTIR was used while 1H NMR analysis was carried out to characterize the important functional groups of the products. The effects of reaction time and temperature on the Mw of the reaction mixture were also studied by GPC.展开更多
Resin plugging agents play a pivotal role in addressing casing damage in oil and gas fields.However,the widespread use of epoxy resin is constrained by its high cost and non-renewable origin,while plant-based resins o...Resin plugging agents play a pivotal role in addressing casing damage in oil and gas fields.However,the widespread use of epoxy resin is constrained by its high cost and non-renewable origin,while plant-based resins often suffer from inadequate mechanical properties,which limit their effectiveness in such applications.This study introduces BEOPA,an innovative,renewable,high-strength resin plugging agent derived from epoxidized soybean oil(ESO)and enhanced with bisphenol A-type benzoxazine(BZ).In this study,the synthesis process,reactionmechanism,and application performance of this novelmaterial are systematically presented,explored and optimized.It is shown that the optimal formulation of BEOPA includes 41.4 wt%ESO,24.8 wt%BZ,24.8 wt%methylhexahydrophthalic anhydride(MHHPA),8.2 wt%styrene(ST),and 0.8 wt%N,N-dimethylbenzylamine(BDMA),yielding an impressive compressive strength of 93.7 MPa.The integration of ESO and BZ creates an intricate and robust double crosslinking network,significantly enhancing material strength and durability.BEOPA exhibits a tunable curing time,ranging from 0.5 to 15 h,with viscosities below 300 mPa⋅s at 25℃and 75mPa⋅s at 50℃.Furthermore,it demonstrates exceptional thermal stability within the 100℃-150℃range,even in environments with mineral salt concentrations as high as 43,330 mg/L.Remarkably,BEOPA achieves superior plugging performance,sustaining breakthrough pressures exceeding 29.7 MPa in 1 mm crack cores.展开更多
The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The result...The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The resulting copolymer has a molecular weight of 13.7kg·mol^(-1),a narrow molecular weight distribution of 1.03 and a strictly alternating structure.The MALDI-TOF MS characterization and DFT calculations including electrostatic potential(ESP),hydrogen-atom abstraction(HAA),independent gradient model based on hirshfeld partition(IGMH)and atoms-in-molecules(AIM)analysis were used to investigate the metal-free catalytic process.The synergistic effect of anions and cations of EMIMCl for ROAC of DHC and epoxides was demonstrated.This study provides a metal-free catalytic system for the facile synthesis of alternating polyesters from DHC.展开更多
[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[...[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[RhCl(Ph3P)3]as the catalyst.[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane is a novel kind of silicon-containing epoxide.The factors affecting the reaction yield,such as catalyst use,reaction time and reaction temperature,were investigated,and the synthesized product was characterized and analyzed by FT-IR and 1H-NMR.A series of amine-curing resins were prepared with[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane,bisphenol A epoxy resin(E-51)and modified amine(593 amine).The mechanical properties of cured splines with the different proportions of amine-curing resins were tested.When the content of 593 amine was 20%,the content of E-51 was 75%and the amount of[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was 5%,the mechanical properties of the cured splines were the best with the tensile strength being 23.3 MPa,the elongation at break being 7.8%,and the Young's modulus being 421.3 MPa.展开更多
Selective oxidation of olefin to epoxides is an important reaction in industry,however,developing heterogeneous catalysts to achieve the effective catalysis for this reaction under O_(2)atmosphere at room temperature ...Selective oxidation of olefin to epoxides is an important reaction in industry,however,developing heterogeneous catalysts to achieve the effective catalysis for this reaction under O_(2)atmosphere at room temperature is challenging but highly desired.In this work,two novel 2D cobalt metal-organic complexes,namely[Co(L)(5-HIP)]·2H_(2)O(Co-MOC-1)and[Co(L)(BTEC)_(0.5)]·H_(2)O(Co-MOC-2)(L=(E)-4,4-(ethene-1,2-diyl))bis(N-(pyridin-3-yl)benzamide;5-H_(2)HIP=5-hydroxyisophthalic acid;H4BTEC=pyromellitic acid)were designed and synthesized through hydrothermal method,which exhibited different metal coordination modes(4-coordinate and 5-coordinate,respectively)and 2D layer structures directed by different carboxylates co-ligands.Two Co-MOCs can serve as heterogeneous catalysts for the selective oxidation of olefins to epoxides at room temperature using O_(2)as oxidant.Furthermore,a higher catalysis activity of Co-MOC-1 than Co-MOC-2(96.7%vs.90.2%yield of 1,2-epoxycyclooctane)was observed,which may be attributed to the coordination unsaturated Co centers,the less coordination number and larger interlayer spacing of Co-MOC-1.展开更多
基金financially supported by the National Natural Science Foundation of China(No.32460363)Yunnan Province Agricultural Joint Key Foundation(No.202401BD070001-029)+3 种基金as well as the Yunnan Provincial Youth top talent project(No.YNWR-QNBJ-2020-166)Foreign Expert Workstation(No.202305 AF150006)111 project(No.D21027)Yunnan Province Natural Science Key Foundation(No.202301AS070043)。
文摘In this study,epoxidized soybean oil(ESO)and ricinoleic acid(RA)were used to synthesize polyol esters,designated ESO-RA(ER)resin.The esters were further crosslinked with 4,4-diphenylmethane diisocyanate(PMDI)to create a biodegradable flame-retardant thermoset foam,referred to as ESO-RA-PMDI(ERP)foam,using water as a foaming agent.Additionally,flame retardants such as triethyl phosphate(TEP)and expanded graphite(EG)have been combined for foam preparation without the need for catalysts or foaming agents.The study findings showed that the incorporation of TEP and EG diminished the pulverization ratio while augmenting the compressive strength and shore hardness.Furthermore,the ERP foam exhibited exceptional flame retardant characteristics,as evidenced by a reported limiting oxygen index(LOI)value of 30.6vol%.A peak heat release rate of 97.12 kW/m^(2)was reported during the fire test.Significantly,a low peak smoke production rate(pSPR)of 0.026m^(2)/s and a total smoke production(TSP)of 0.62 m^(2)were achieved.In addition,ERP foam exhibited exceptional ultraviolet(UV)resistance,thermal insulation,and biodegradability.After 60 days of exposure to Penicillium sp.,foam containing both TEP and EG exhibited a mass loss of 9.39%,indicating that the incorporation of flame retardants did not negatively impact its biodegradability.
基金Supported by the Key Science&Technology Item of Guangdong Province(TC05B372-6).
文摘A novel epoxidized soybean oil-toughened-phenolic resin(ESO-T-PR)has been synthesized by etheri- fication graft and multi-amine curing ESO.Fourier transform infrared spectroscopy(FTIR)was adopted to investi- gate its molecular structure and scan electron microscope(SEM)was used to observe the micro morphology of its impact fracture surface.This ESO-T-PR was adopted as the matrix resin to prepare paper copper clad laminate (P-CCL)and the properties of resulting P-CCL are found superior to the related Chinese National Standard.The toughing mechanism was investigated by comparing the impact strength,solderleaching resistance,flexural strength, peeling strength and morphology of this ESO-T-PR with those of other two ESO modified phenolic resins.It is demonstrated that during the synthesizing process of ESO-T-PR,the phenol hydroxyl is etherified by ESO or ESO epoxy resin prepolymer(ESO chain extension polymer)and the long ESO epoxy resin chain segments enhance the crosslink density of ESO-T-PR and consequently improve the impact toughness and solderleaching resistance of P-CCL made of ESO-T-PR.The ESO-T-PR is a cheap matrix resin with excellent properties to make P-CCL(elec- tric guide board).
基金funding and support from the Austrian Research Promotion Agency(FFG).
文摘Here,we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres.The composite was prepared either completely binder-less or bonded with 10%(w/w)of a bio-based resin which was a mixture of an epoxidized linseed oil and a tall-oil based polyamide.The flexural modulus of elasticity,the flexural strength and the water absorption of hot pressed Typha panels were measured and the influence of pressing time and panel density on these properties was investigated.The cure kinetics of the biobased resin was analyzed by differential scanning calorimetry(DSC)in combination with the iso-conversional kinetic analysis method of Vyazovkin to derive the curing conditions required for achieving completely cured resin.For the binderless Typha panels the best technological properties were achieved for panels with high density.By adding 10%of the binder resin the flexural strength and especially the water absorption were improved significantly.
基金Supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20030561014)
文摘This study investigated that epoxidized soybean oil (ESO) was blended as plasticizer with poly (lactic acid) (PLA) and its effects on the melt rheological properties, such as melt flow index, apparent shear viscosity, and melt strength of the blends. PLA was blended by the twin-screw plastic extruder at five mass fractions: 3%, 6%, 9%, 12%, and 15% (based on PLA mass). Melt flow index (MFI) was examined with a melt flow indexer. The results indicate that the blends of PLA/ESO had higher MFI than pure PLA, except for MFI at 9% reaching to the lowest point, even lower than that of pure PLA. Melt rheological properties were studied by a capillary rheometer in a temperature range of 160-180℃. The blends exhibited shear-thinning behavior and the apparent shear viscosity was well described by the power law in this shear rate region. The melt strength of PLA plasticized with 6% ESO reached the maximums. ESO was more effective in increasing the melt strength at the mass fractions less than 6%, which could toughen the blends to some extent. Therefore, the authors suggested the optimum addition level of 6%-9% ESO will get good melt rheological performance balance.
基金Financial supports by the National Natural Science Foundation of China (Nos.51761135132 and 51822304) are sincerely acknowledged。
文摘A novel kind of fully bio-based PSAs we re obtained through the curing reaction between two components derived from the plant oils:carboxyl-terminated polyricinoleate(PRA) fro m the castor oil and epoxidized soybean oil(ESO).The get content,glass transition temperature(Tg),rheological behavior,tensile strength,creep resistance and 180° peel strength of the PSAs were feasibly tailored by adjusting the component ratio of ESO to PRA.At low cross-linking level,the PSAs behaved like a viscous liquid and did not possess enough cohesiveness to sustain the mechanical stress during peeling,The PSAs cross-linked at or near the optimal stoichiometric conditions displayed an adhesive(interfacial) failure between the substrate and the adhesive layer,which were associated with the lowest adhesion levels.The PSAs with the dosage amount of ESO ranging from 10.20 wt% were tacky and flexible,which exhibited 1800 peel strength ranging from 0.4~2.3 N/cm;and could be easily removed without any residues on the adherend.The process for the preparation of the fully bio-based PSAs was environmentally friendly without using any orga nic solve nt or other toxic chemical,herein showing the great potential as sustainable materials.
基金the Key Science & Technology Item of Guangdong province (No. TC05B372-6)
文摘The novel epoxidized soybean oil-modified-phenolic resin/clay nanocomposites(ESO-M-PR/ CN) was prepared. The coupling agent-benzyldimethylphenylammonium chloride [C6H5CH2N^+(CH3)2C6H5Cl^- , B2MP] was adopted to modify the interface between the organic and inorganic phases. The effect of the nanocomposite structure on its physical and chemical properties was discussed. During the synthesizing process of ESO-M-PR/CN, the phenol hydroxyl was etherified by ESO or ESO epoxy resin prepolymer to provide long ESO epoxy segments. Long ESO epoxy resin chain segments enhanced the crosslink density of ESO-M- PR/CN. The thermal and mechanical properties exhibit a significant improvement. The temperature at which a weight loss of 5% occurs increases from 287.1 ℃ to 402.3 ℃. The flexural strength increases by 25%, while the flexural modulus increases by 39%. Moreover, the properties of resin were enhanced by the effect of the inorganic nanoparticles, while the size of the nanomontmorillonites in the phenolic resin was characterized with a scanning electron microscope. The particle size of inorganic montmorillonites in the modified system is less than 100 nm.
基金Financial support provided by the National High-tech Research and Development Program of China(2014AA022103)。
文摘Biodiesel was used to prepare epoxidized fatty acid isobutyl esters(Ep-FABEs)as a biobased plasticizer in this work.Transesterification of biodiesel with isobutanol catalyzed by tetrabutyl titanate was carried out in a gas-liquid tower reactor.The conversion achieved nearly 100%within 5 h under the reaction temperature,the mass ratio of catalyst to fatty acid methyl esters(FAMEs),and isobutanol to FAMEs total molar ratio of 180℃,0.4%(mass),and 5.4:1,respectively.In addition,kinetic model of the transesterification reaction was developed at 150–190℃.The calculated activation energy was 48.93 kJ·mol^(-1).Then,the epoxidation of obtained fatty acid isobutyl esters(FABEs)was conducted in the presence of formic acid and hydrogen peroxide.The Ep-FABEs was further analyzed for its plasticizing effectiveness to replace dioctyl phthalate(DOP)and compared with conventional epoxy plasticizer epoxidized fatty acid methyl esters(Ep-FAMEs).The results indicated that the thermal stability and mechanical properties of PVC films with Ep-FABEs plasticizer were significantly improved compared with those plasticized with DOP.In addition,the extraction resistance and migration stability of Ep-FABEs were better than those of EpFAMEs.Overall,the prepared Ep-FABEs via structural modification of biodiesel proved to be a promising biobased plasticizer.
文摘In this work,Epoxidized natural rubber/sawdust short fiber(ENR-50/SD)composites at different fiber content(5,10,15 and 20 phr)and size(fine size at 60–100μm and coarse size at 10–20 mm)were prepared using two-roll mill and electrical-hydraulic hot press machine respectively.Curing characteristics,water uptake,tensile,morphological,physical,and thermal properties of the composites were investigated.Results indicated that the scorch time and cure time became shorter whereas torque improved as SD content increase.Though the decline of tensile strength and elongation at break values,modulus,hardness and crosslinking density have shown enhancements with the increasing of SD content.The water uptake percentage of all samples has shown an increasing as SD content increase.However,the low SD content,particularly fine size have presented lower water uptake.The temperature of weight%loss(5 and 50 wt%loss)of 5 phr SD(low content)have recorded higher temperature compared to 20 phr SD(high content)in the rubber composites,which indicated higher thermal stability.The fine size of SD has recorded better overall properties than SD coarse size at same loading in the rubber composites.
文摘The natural rubber (NR) was mixed with chlorosulfonated polyethylene (CSM), due to the difference of polarity in NR and CSM made this blend incompatible and the third component was used. Epoxidzed natural rubber (ENR) was used as a third component. NR/CSM blended with the blend ratio of 50/50 was prepared by using a two-roll mill and vulcanization in a compression mold at 160°C. The ENR content was varied from 1 to 7 phr. The curing characteristics, morphology, mechanical properties, and automotive fuel swelling were investigated. The results indicated that the cure time of the blend rubbers was shorter as adding ENR. The mechanical properties of the blend rubbers were not affected by ENR content. However, automotive fuel resistance of the blend rubbers was found to increase with adding ENR in rubber blend.
文摘This article reports the production of electrospun fibers from blends of poly(lactic acid) (PLA) and epoxidized natural rubber (ENR) solutions. The produced fibers were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). SEM images showed the reduction in fiber size with ENR content of up to 25% in the mixture PLA/ENR. FTIR analysis revealed a possible interaction between carboxylic group of PLA and epoxi group of ENR. Thermal analysis showed the increase of the crystallinity fraction with ENR content and a decrease in thermal stability of eletrospun mats with the addition of ENR. The dynamic mechanical properties showed an enhancement of the stiffness of PLA/ENR blends with the increase of ENR content, which can support the production of interesting materials for tissue engineering based on renewable and biocompatible polymers. The reported properties indicate the possibility to use such fiber mats as potential materials in tissue engineering.
文摘In this work, free tall oil fatty acids were epoxidized with in-situ generated peroxyacetic acid. Reaction kineticsof epoxidation was investigated by oxirane content and iodine value titrimetric determination, as well as FTIRspectra analysis. A highly functional biobased polyol was synthesized by functionalizing epoxidized tall oilfatty acids with triethanolamine using Montmorillonite K10 as a catalyst. The obtained polyol was analyzed byFTIR and MALDI-TOF MS. The most common chemical and physical characteristics of obtained polyol weredetermined.
基金supported by Key Research and Development Program of Sichuan,China(2023YFG0087)Natural Science Foundation of Sichuan,China(2023NSFSC0325)+2 种基金Sichuan Science and Technology Program(2022ZYD0035)Key Research and Development Supporting Program of Chengdu,China(2022-YF05-00103-SN)Engineering Innovation Team Project of Sichuan University(2020SCUNG122).
文摘The global scenario on PVC plasticizer is experiencing a drastic change from petroleum-based,toxic di-(2-ethylhexyl)phthalate(DEHP)toward renewable,non-toxic bio-alternatives.However,replacing diisodecyl phthalate(DIDP),a DEHP analogue specifically intended for plasticizing PVC automotive upholstery,with bio-alternative remains a challenge as few bio-plasticizer volatilizes from PVC as slowly as DIDP,a crucial aspect compulsorily required by automotive industry.Here,we demonstrate that covalently attaching two short esters at theα-position of all components of a traditional epoxidized fatty acid methyl ester via a two-step,hydrogen-to-ester nucleophilic substitution in a one-pot procedure yields an epoxidized fatty acid tri-ester bio-plasticizer with remarkably suppressed volatilization from PVC,and hence an extremely low fogging value comparable to DIDP.With this strategy in hand,DIDP,long deemed irreplaceable despite its toxicity and non-renewable nature,may ultimately be phased out.
基金Fundamental Research Funds of CAF(No.CAFYBB2017QA017)Natural Science Foundation of Jiangsu Province(No.BK20161122)。
文摘A novel phosphorous-containing acrylated epoxidized soybean oil-based(P-AESO)resin was developed via the ring-opening reaction of epoxidized soybean oil(ESO)with diphenylphosphinic chloride(DPPC),followed by acrylation of the resulting groups.The chemical structure was characterized by Fourier transform infrared spectroscopy(FT-IR),and ^(1)H nuclear magnetic resonance(^(1)H NMR).Subsequently,the viscosity and volumetric shrinkage of the obtained P-AESO resins were studied.Then the oligomer was formulated into UV-curable coatings,and the mechanical,thermal,and coating properties of the resulting UV-cured bioresins were studied by tensile testing,dynamic mechanical thermal analysis(DMA),thermogravimetric analysis(TGA)coupled with FT-IR spectroscopy(TGA-FT-IR),hardness,adhesion,pencil hardness and chemical resistance.Furthermore,the UV-curing behavior of the P-AESO resin was determined by real-time realtime infrared(RT-IR).Meanwhile,compared with coating from acrylated epoxidized soybean oil(AESO),the P-AESO system coatings showed better volumetric shrinkage,excellent adhesion,and enhanced thermal and glass transition temperature(Tg)while maintaining reasonably final C=C conversions and cross-link density.For instance,the obtained P-AESO/trimethylolpropanetriacrylate(TMPTA)20 material possessed a volumetric shrinkage of 4.1%,Tg of 115.6℃,char yield of 9.47%,and final C=C conversions of 81.4%respectively,which exhibited superior values than that of the AESO/TMPTA20 material.The improvement of the P-AESO coating performances could contribute to the architectures that combined the structural features of phosphorous-containing rigid benzene.The developed P-AESO resin is promising for applications in the UV-curable coatings.
基金This work was supported by the National Natural Science Foundation of China[grant number 51222301],[grant number 51473050],[grant number 51333003]Research Fund for the Doctoral Program of Higher Education of China[grant number 20130172110001]Fundamental Research Funds for the Central Universities[grant number 2014ZG0001].
文摘Although various shape memory polymers(SMPs)or diverse applications have been widely reported,the SMPs based on rubbers have been rarely realized due to the low triggering temperature of rubbers.In another aspect,the SMPs based on sustainable substances are highly desired for the growing shortage in fossil resources.In the present study,we accordingly developed the sustainable SMPs with tunable triggering temperature,based on natural rubber(NR)and ferulic acid(FA)as the raw materials.Specifically,the SMPs are based on a crosslinked network of epoxidized natural rubber(ENR)crosslinked by in situ formed zinc ferulate(ZDF)via oxa-Michael reaction.The excellent shape memory effect(SME)is found in these SMPs,as evidenced by the high fixity/recovery ratio and the tunable triggering temperature.With the incorpora-tion of natural halloysite nanotubes(HNTs),the stress and recovery rate of the SMPs are found to be tunable,which widens the application of this kind of SMPs.The combination of adoption of sustainable raw materials,and the excellent and tunable SME makes these SMPs potentially useful in many applications,such as various actuators and heat-shrinkable package materials.
基金financial support of this work by National Key Research and Development Program of China(2017YFB0308600)National Natural Science Foundation of China(21878196)Fundamental Research Funds for the Central Universities,China(20826041C4159).
文摘Processing polyvinyl chloride(PVC)artificial material requires plasticizer that softens the PVC coating.Currently,utilizing unsaturated fatty acid methyl esters to obtain epoxidized fatty acid methyl ester(EFAME)bio-plasticizers constitutes an environmentally responsible solution to substitute conventional ortho-phthalates that are endocrine disruptors or probable carcinogens.However,commercial EFAMEs,even with the highest epoxy value(ca.5.5-5.8%)so far,still suffer from fast leaching from the PVC matrix,burdening the environment and shortening lifespan of the artificial material.Here,we report a proof-of-principle demonstration of a new strategy to obtain migration-resistant EFAME that harnesses the midchain hydroxyl of methyl ricinoleate and covalently attachment of a pendant acetate ester.Despite a low epoxy value(3.0%),the engineered bio-plasticizer displays significantly suppressed migration in multiple scenarios compared with one conventional EFAME with much higher epoxy value(5.8%).Circumventing the limit confronting previous strategy that highlights the sole contribution of epoxy value to achievable migration resistance,the rationale herein may provide guidance for designing new EFAMEs with comparable performance to ortho-phthalates,thus bringing the old and oft-maligned PVC artificial material industry one step closer to sustainability.
文摘In this work, polyester polyols with high weight average molecular weight (Mw) (Mw= 10000-15000) were prepared from epoxidized palm olein (EPOo) and a series of dicarboxylic acids (C6-C12) at elevated temperature under non-catalyzed condition. The optimal reaction conditions were determined as 180 ℃ for 4 h. Longer carbon chain length of dicarboxylic acids was more reactive when reacted with EPOo. The physical appearance of the product was observed as liquid at room temperature. This palm oil-based polyester polyol is proposed as starting material for flexible polyurethane. For reaction monitoring purposes, FTIR was used while 1H NMR analysis was carried out to characterize the important functional groups of the products. The effects of reaction time and temperature on the Mw of the reaction mixture were also studied by GPC.
基金supported by the National Natural Science Foundation of China(U23B20156,52174033).
文摘Resin plugging agents play a pivotal role in addressing casing damage in oil and gas fields.However,the widespread use of epoxy resin is constrained by its high cost and non-renewable origin,while plant-based resins often suffer from inadequate mechanical properties,which limit their effectiveness in such applications.This study introduces BEOPA,an innovative,renewable,high-strength resin plugging agent derived from epoxidized soybean oil(ESO)and enhanced with bisphenol A-type benzoxazine(BZ).In this study,the synthesis process,reactionmechanism,and application performance of this novelmaterial are systematically presented,explored and optimized.It is shown that the optimal formulation of BEOPA includes 41.4 wt%ESO,24.8 wt%BZ,24.8 wt%methylhexahydrophthalic anhydride(MHHPA),8.2 wt%styrene(ST),and 0.8 wt%N,N-dimethylbenzylamine(BDMA),yielding an impressive compressive strength of 93.7 MPa.The integration of ESO and BZ creates an intricate and robust double crosslinking network,significantly enhancing material strength and durability.BEOPA exhibits a tunable curing time,ranging from 0.5 to 15 h,with viscosities below 300 mPa⋅s at 25℃and 75mPa⋅s at 50℃.Furthermore,it demonstrates exceptional thermal stability within the 100℃-150℃range,even in environments with mineral salt concentrations as high as 43,330 mg/L.Remarkably,BEOPA achieves superior plugging performance,sustaining breakthrough pressures exceeding 29.7 MPa in 1 mm crack cores.
基金financially supported by the National Natural Science Foundation of China(No.22161040)Natural Science Foundation of Gansu(No.24JRRA125)Science Research Project of Northwest Normal University(No.NWNU-LKZD2021-3)。
文摘The ring-opening alternating copolymerization(ROAC)of 3,4-dihydrocoumarin(DHC)/epoxides has been successfully developed using an imidazolium salt of 1-ethyl-3-methylimidazolium chloride(EMIMCl)as a catalyst.The resulting copolymer has a molecular weight of 13.7kg·mol^(-1),a narrow molecular weight distribution of 1.03 and a strictly alternating structure.The MALDI-TOF MS characterization and DFT calculations including electrostatic potential(ESP),hydrogen-atom abstraction(HAA),independent gradient model based on hirshfeld partition(IGMH)and atoms-in-molecules(AIM)analysis were used to investigate the metal-free catalytic process.The synergistic effect of anions and cations of EMIMCl for ROAC of DHC and epoxides was demonstrated.This study provides a metal-free catalytic system for the facile synthesis of alternating polyesters from DHC.
基金Funded by the National Natural Science Foundation of China(No.21865017)。
文摘[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was synthesized,using tert-butyldimethylsilane(TBDMS)and 1,2-epoxy-4-vinylcyclohexane(EVC)as the main raw materials and tris(triphenylphosphine)chlororhodium(I)[RhCl(Ph3P)3]as the catalyst.[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane is a novel kind of silicon-containing epoxide.The factors affecting the reaction yield,such as catalyst use,reaction time and reaction temperature,were investigated,and the synthesized product was characterized and analyzed by FT-IR and 1H-NMR.A series of amine-curing resins were prepared with[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane,bisphenol A epoxy resin(E-51)and modified amine(593 amine).The mechanical properties of cured splines with the different proportions of amine-curing resins were tested.When the content of 593 amine was 20%,the content of E-51 was 75%and the amount of[2-(3,4-epoxy-cyclohexyl)ethyl]dimethyltert-butylsilane was 5%,the mechanical properties of the cured splines were the best with the tensile strength being 23.3 MPa,the elongation at break being 7.8%,and the Young's modulus being 421.3 MPa.
基金financially supported by the National Natural Science Foundation of China(Nos.22271021,21971024,22201021)the Doctoral Scientific Research Foundation of Liaoning Province(No.2022-BS-302)。
文摘Selective oxidation of olefin to epoxides is an important reaction in industry,however,developing heterogeneous catalysts to achieve the effective catalysis for this reaction under O_(2)atmosphere at room temperature is challenging but highly desired.In this work,two novel 2D cobalt metal-organic complexes,namely[Co(L)(5-HIP)]·2H_(2)O(Co-MOC-1)and[Co(L)(BTEC)_(0.5)]·H_(2)O(Co-MOC-2)(L=(E)-4,4-(ethene-1,2-diyl))bis(N-(pyridin-3-yl)benzamide;5-H_(2)HIP=5-hydroxyisophthalic acid;H4BTEC=pyromellitic acid)were designed and synthesized through hydrothermal method,which exhibited different metal coordination modes(4-coordinate and 5-coordinate,respectively)and 2D layer structures directed by different carboxylates co-ligands.Two Co-MOCs can serve as heterogeneous catalysts for the selective oxidation of olefins to epoxides at room temperature using O_(2)as oxidant.Furthermore,a higher catalysis activity of Co-MOC-1 than Co-MOC-2(96.7%vs.90.2%yield of 1,2-epoxycyclooctane)was observed,which may be attributed to the coordination unsaturated Co centers,the less coordination number and larger interlayer spacing of Co-MOC-1.