Terpenoids,one of the most diverse and structurally varied natural products in nature,are widely distributed in plants,microbes,and other organisms.Their structural diversity confers significant importance in medicine...Terpenoids,one of the most diverse and structurally varied natural products in nature,are widely distributed in plants,microbes,and other organisms.Their structural diversity confers significant importance in medicine,food,flavorings,and energy.However,traditional methods of plant extraction and chemical synthesis have limitations in industrial applications.Consequently,microbial cell factories have emerged as an important platform for terpenoid production.Terpene synthases(TPSs)are crucial in determining the structural and functional diversity of terpenoids.This review discussed the origin and classificationof TPSs,outlines commonly used TPS mining methods,and summarizes advances in TPS engineering.In addition,it also explores the influenceof machine learning on enzyme mining,the existing challenges and the future opportunities alongside cutting-edge technologies.展开更多
UDP-Glycosyltransferases(UGTs)catalyze the transfer of nucleotide-activated sugars to specific acceptors,among which the GT1 family enzymes are well-known for their function in biosynthesis of natural product glycosid...UDP-Glycosyltransferases(UGTs)catalyze the transfer of nucleotide-activated sugars to specific acceptors,among which the GT1 family enzymes are well-known for their function in biosynthesis of natural product glycosides.Elucidating GT function represents necessary step in metabolic engineering of aglycone glycosylation to produce drug leads,cosmetics,nutrients and sweeteners.In this review,we systematically summarize the phylogenetic distribution and catalytic diversity of plant GTs.We also discuss recent progress in the identifi-cation of novel GT candidates for synthesis of plant natural products(PNPs)using multi-omics technology and deep learning predicted models.We also highlight recent advances in rational design and directed evolution engineering strategies for new or improved GT functions.Finally,we cover recent breakthroughs in the appli-cation of GTs for microbial biosynthesis of some representative glycosylated PNPs,including flavonoid glycosides(fisetin 3-O-glycosides,astragalin,scutellarein 7-O-glucoside),terpenoid glycosides(rebaudioside A,ginseno-sides)and polyketide glycosides(salidroside,polydatin).展开更多
基金supported by the National Key Research and Development Program of China(2020YFA0908300)the Natural Science Foundation of China(22138006,22278240).
文摘Terpenoids,one of the most diverse and structurally varied natural products in nature,are widely distributed in plants,microbes,and other organisms.Their structural diversity confers significant importance in medicine,food,flavorings,and energy.However,traditional methods of plant extraction and chemical synthesis have limitations in industrial applications.Consequently,microbial cell factories have emerged as an important platform for terpenoid production.Terpene synthases(TPSs)are crucial in determining the structural and functional diversity of terpenoids.This review discussed the origin and classificationof TPSs,outlines commonly used TPS mining methods,and summarizes advances in TPS engineering.In addition,it also explores the influenceof machine learning on enzyme mining,the existing challenges and the future opportunities alongside cutting-edge technologies.
基金the National Key R&D Program of China(2020YFA0907900,2018YFE0200501)the National Natural Science Foundation of China(Grant number 32030063).
文摘UDP-Glycosyltransferases(UGTs)catalyze the transfer of nucleotide-activated sugars to specific acceptors,among which the GT1 family enzymes are well-known for their function in biosynthesis of natural product glycosides.Elucidating GT function represents necessary step in metabolic engineering of aglycone glycosylation to produce drug leads,cosmetics,nutrients and sweeteners.In this review,we systematically summarize the phylogenetic distribution and catalytic diversity of plant GTs.We also discuss recent progress in the identifi-cation of novel GT candidates for synthesis of plant natural products(PNPs)using multi-omics technology and deep learning predicted models.We also highlight recent advances in rational design and directed evolution engineering strategies for new or improved GT functions.Finally,we cover recent breakthroughs in the appli-cation of GTs for microbial biosynthesis of some representative glycosylated PNPs,including flavonoid glycosides(fisetin 3-O-glycosides,astragalin,scutellarein 7-O-glucoside),terpenoid glycosides(rebaudioside A,ginseno-sides)and polyketide glycosides(salidroside,polydatin).