Failure mode and effects analysis (FMEA) offers a quick and easy way for identifying ranking-order for all failure modes in a system or a product. In FMEA the ranking methods is so called risk priority number (RPN...Failure mode and effects analysis (FMEA) offers a quick and easy way for identifying ranking-order for all failure modes in a system or a product. In FMEA the ranking methods is so called risk priority number (RPN), which is a mathematical product of severity (S), occurrence (0), and detection (D). One of major disadvantages of this ranking-order is that the failure mode with different combination of SODs may generate same RPN resulting in difficult decision-making. Another shortfall of FMEA is lacking of discerning contribution factors, which lead to insufficient information about scaling of improving effort. Through data envelopment analysis (DEA) technique and its extension, the proposed approach evolves the current rankings for failure modes by exclusively investigating SOD in lieu of RPN and to furnish with improving sca.les for SOD. The purpose of present study is to propose a state-of-the-art new approach to enhance assessment capabilities of failure mode and effects analysis (FMEA). The paper proposes a state-of-the-art new approach, robust, structured and useful in practice, for failure analysis.展开更多
In the data envelopment analysis(DEA)literature,productivity change captured by the Malmquist productivity index,especially in terms of a deterministic environment and stochastic variability in inputs and outputs,has ...In the data envelopment analysis(DEA)literature,productivity change captured by the Malmquist productivity index,especially in terms of a deterministic environment and stochastic variability in inputs and outputs,has been somewhat ignored.Therefore,this study developed a firm-specific,DEA-based Malmquist index model to examine the efficiency and productivity change of banks in a stochastic environment.First,in order to estimate bank-specific efficiency,we employed a two-stage double bootstrap DEA procedure.Specifically,in the first stage,the technical efficiency scores of banks were calculated by the classic DEA model,while in the second stage,the double bootstrap DEA model was applied to determine the effect of the contextual variables on bank efficiency.Second,we applied a two-stage procedure for measuring productivity change in which the first stage included the estimation of stochastic technical efficiency and the second stage included the regression of the estimated efficiency scores on a set of explanatory variables that influence relative performance.Finally,an empirical investigation of the Iranian banking sector,consisting of 120 bank-year observations of 15 banks from 2014 to 2021,was performed to measure their efficiency and productivity change.Based on the findings,the explanatory variables(i.e.,the nonperforming loan ratio and the number of branches)indicated an inverse relationship with stochastic technical efficiency and productivity change.The implication of the findings is that,in order to improve the efficiency and productivity of banks,it is important to optimize these factors.展开更多
Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environ...Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environmental damages caused by industrial pollutants. Methods A data of envelopment analysis (DEA) framework crediting both reduction of pollution outputs and expansion of good outputs was designed as a model to compute environmental efficiency of China's regional industrial systems. Results As shown by the geometric mean of environmental efficiency, if other inputs were made constant and good outputs were not to be improved, the air pollution outputs would have the potential to be decreased by about 60% in the whole China. Conclusion Both environmental and technical efficiencies have the potential to be greatly improved in China, which may provide some advice for policy-makers.展开更多
Envelope analysis is an effective method for characterizing impulsive vibrations in wired condition monitoring(CM)systems. This paper depicts the implementation of envelope analysis on a wireless sensor node for obtai...Envelope analysis is an effective method for characterizing impulsive vibrations in wired condition monitoring(CM)systems. This paper depicts the implementation of envelope analysis on a wireless sensor node for obtaining a more convenient and reliable CM system. To maintain CM performances under the constraints of resources available in the cost effective Zigbee based wireless sensor network(WSN), a low cost cortex-M4 F microcontroller is employed as the core processor to implement the envelope analysis algorithm on the sensor node. The on-chip 12 bit analog-to-digital converter(ADC) working at 10 k Hz sampling rate is adopted to acquire vibration signals measured by a wide frequency band piezoelectric accelerometer. The data processing flow inside the processor is optimized to satisfy the large memory usage in implementing fast Fourier transform(FFT) and Hilbert transform(HT). Thus, the envelope spectrum can be computed from a data frame of 2048 points to achieve a frequency resolution acceptable for identifying the characteristic frequencies of different bearing faults. Experimental evaluation results show that the embedded envelope analysis algorithm can successfully diagnose the simulated bearing faults and the data transmission throughput can be reduced by at least 95% per frame compared with that of the raw data, allowing a large number of sensor nodes to be deployed in the network for real time monitoring.展开更多
The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs ty...The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs typically have some levels of fuzziness. To analyze a decision making unit (DMU) with fuzzy input/output data, previous studies provided the fuzzy DEA model and proposed an associated evaluating approach. Nonetheless, numerous deficiencies must still be improved, including the α- cut approaches, types of fuzzy numbers, and ranking techniques. Moreover, a fuzzy sample DMU still cannot be evaluated for the Fuzzy DEA model. Therefore, this paper proposes a fuzzy DEA model based on sample decision making unit (FSDEA). Five eval- uation approaches and the related algorithm and ranking methods are provided to test the fuzzy sample DMU of the FSDEA model. A numerical experiment is used to demonstrate and compare the results with those obtained using alternative approaches.展开更多
In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal m...In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal mine safety should lead to improved efficiency in the use of funds and management resources. This helps government and enterprise managers better understand how safety inputs are used and to optimize allocation of resources. Study on coal mine's efficiency assessment of safety input was con- ducted in this paper. A C^2R model with non-Archimedean infinitesimal vector based on output is established after consideration of the input characteristics and the model properties. An assessment of an operating mine was done using a specific set of input and output criteria. It is found that the safety input was efficient in 2002 and 2005 and was weakly efficient in 2003. However, the efficiency was relatively low in both 2001 and 2004. The safety input resources can be optimized and adjusted by means of projection theory. Such analysis shows that, on average in 2001 and 2004, 45% of the expended funds could have been saved. Likewise, 10% of the safety management and technical staff could have been eliminated and working hours devoted to safety could have been reduced by 12%. These conditions could have Riven the same results.展开更多
China implemented the public hospital reform in 2012. This study utilized bootstrapping data envelopment analysis(DEA) to evaluate the technical efficiency(TE) and productivity of county public hospitals in Easter...China implemented the public hospital reform in 2012. This study utilized bootstrapping data envelopment analysis(DEA) to evaluate the technical efficiency(TE) and productivity of county public hospitals in Eastern, Central, and Western China after the 2012 public hospital reform. Data from 127 county public hospitals(39, 45, and 43 in Eastern, Central, and Western China, respectively) were collected during 2012–2015. Changes of TE and productivity over time were estimated by bootstrapping DEA and bootstrapping Malmquist. The disparities in TE and productivity among public hospitals in the three regions of China were compared by Kruskal–Wallis H test and Mann–Whitney U test. The average bias-corrected TE values for the four-year period were 0.6442, 0.5785, 0.6099, and 0.6094 in Eastern, Central, and Western China, and the entire country respectively, with average non-technical efficiency, low pure technical efficiency(PTE), and high scale efficiency found. Productivity increased by 8.12%, 0.25%, 12.11%, and 11.58% in China and its three regions during 2012–2015, and such increase in productivity resulted from progressive technological changes by 16.42%, 6.32%, 21.08%, and 21.42%, respectively. The TE and PTE of the county hospitals significantly differed among the three regions of China. Eastern and Western China showed significantly higher TE and PTE than Central China. More than 60% of county public hospitals in China and its three areas operated at decreasing return scales. There was a considerable space for TE improvement in county hospitals in China and its three regions. During 2012–2015, the hospitals experienced progressive productivity; however, the PTE changed adversely. Moreover, Central China continuously achieved a significantly lower efficiency score than Eastern and Western China. Decision makers and administrators in China should identify the causes of the observed inefficiencies and take appropriate measures to increase the efficiency of county public hospitals in the three areas of China, especially in Central China.展开更多
In the last decade,ranking units in data envelopment analysis(DEA) has become the interests of many DEA researchers and a variety of models were developed to rank units with multiple inputs and multiple outputs.These ...In the last decade,ranking units in data envelopment analysis(DEA) has become the interests of many DEA researchers and a variety of models were developed to rank units with multiple inputs and multiple outputs.These performance factors(inputs and outputs) are classified into two groups:desirable and undesirable.Obviously,undesirable factors in production process should be reduced to improve the performance.Also,some of these data may be known only in terms of ordinal relations.While the models developed in the past are interesting and meaningful,they didn t consider both undesirable and ordinal factors at the same time.In this research,we develop an evaluating model and a ranking model to overcome some deficiencies in the earlier models.This paper incorporates undesirable and ordinal data in DEA and discusses the efficiency evaluation and ranking of decision making units(DMUs) with undesirable and ordinal data.For this purpose,we transform the ordinal data into definite data,and then we consider each undesirable input and output as desirable output and input,respectively.Finally,an application that shows the capability of the proposed method is illustrated.展开更多
The application of data envelopment analysis (DEA) as a multiple criteria decision making (MCDM) technique has been gaining more and more attention in recent research. In the practice of applying DEA approach, the...The application of data envelopment analysis (DEA) as a multiple criteria decision making (MCDM) technique has been gaining more and more attention in recent research. In the practice of applying DEA approach, the appearance of uncertainties on input and output data of decision making unit (DMU) might make the nominal solution infeasible and lead to the efficiency scores meaningless from practical view. This paper analyzes the impact of data uncertainty on the evaluation results of DEA, and proposes several robust DEA models based on the adaptation of recently developed robust optimization approaches, which would be immune against input and output data uncertainties. The robust DEA models developed are based on input-oriented and outputoriented CCR model, respectively, when the uncertainties appear in output data and input data separately. Furthermore, the robust DEA models could deal with random symmetric uncertainty and unknown-but-bounded uncertainty, in both of which the distributions of the random data entries are permitted to be unknown. The robust DEA models are implemented in a numerical example and the efficiency scores and rankings of these models are compared. The results indicate that the robust DEA approach could be a more reliable method for efficiency evaluation and ranking in MCDM problems.展开更多
Data envelopment analysis (DEA) has become a standard non parametric approach to productivity analysis, especially to relative efficiency analysis of decision making units (DMUs). Extended to the prediction field, it ...Data envelopment analysis (DEA) has become a standard non parametric approach to productivity analysis, especially to relative efficiency analysis of decision making units (DMUs). Extended to the prediction field, it can solve the prediction problem with multiple inputs and outputs which can not be solved easily by the regression analysis method.But the traditional DEA models can not solve the problem with undesirable outputs,so in this paper the inherent relationship between goal programming and the DEA method based on the relationship between multiple goal programming and goal programming is explored,and a mixed DEA model which can make all factors of inputs and undesirable outputs decrease in different proportions is built.And at the same time,all the factors of desirable outputs increase in different proportions.展开更多
The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new research...The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new researches begin to focus on the efficiency analysis of non-homogeneous DMU arose by real practices such as the evaluation of departments in a university, where departments argue for the adoption of different criteria based on their disciplinary characteristics. A DEA procedure is proposed in this paper to address the efficiency analysis of two non-homogeneous DMU groups. Firstly, an analytical framework is established to compromise diversified input and output(IO) criteria from two nonhomogenous groups. Then, a criteria fusion operation is designed to obtain different DEA analysis strategies. Meanwhile, Friedman test is introduced to analyze the consistency of all efficiency results produced by different strategies. Next, ordered weighted averaging(OWA) operators are applied to integrate different information to reach final conclusions. Finally, a numerical example is used to illustrate the proposed method. The result indicates that the proposed method relaxes the restriction of the classical DEA model,and can provide more analytical flexibility to address different decision analysis scenarios arose from practical applications.展开更多
One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the mo...One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.展开更多
Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise f...Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise from the stator current signal that arises when rotor bars break. Then a Hilbert Transform is used to extract the envelope from the filtered signal. With the EMD method again,the frequency band containing the fault characteris-tic-frequency components,2sf,can be extracted from the signal's envelope. The last step is to use a Fast Fourier Trans-form (FFT) method to extract the fault characteristic frequency. This frequency can be detected in actual data from a faulty motor,as shown by example. Compared to the Extend Park Vector method this method is proved to be more sen-sitive under light motor load.展开更多
Public hospitals are the most important components of health systems and account for a large proportion of health resources in China. However, few researches on the efficiency assessment of public hospitals have been ...Public hospitals are the most important components of health systems and account for a large proportion of health resources in China. However, few researches on the efficiency assessment of public hospitals have been conducted in Tianjin, China. On the basis of the data of annual health service report in 2013 from the Ministry of Health, we measured the relative efficiency of the tertiary general public hospitals in Tianjin and estimated the magnitudes of output increase and/or input reduction by using data envelopment analysis to improve hospital efficiency. The main findings of this study indicate that more than half of the sample hospitals operate at a technical and scale efficiency, and the prevalent scale inefficiency is increasing returns to scale. Moreover, it is a prominent issue that health resource constraint and resource waste coexist. Health policy-makers and hospital administrators would need to address these problems by taking comprehensive measures such as optimizing the allocation of health resources, implementing hierarchical diagnosis and treatment, as well as innovating medical-service operating mechanism of public hospital to improve the people's wellbeing.展开更多
Traditional data envelopment analysis(DEA) theory assumes that decision variables are regarded as inputs or outputs,and no variable can play the roles of both an input and an output at the same time.In fact,there ex...Traditional data envelopment analysis(DEA) theory assumes that decision variables are regarded as inputs or outputs,and no variable can play the roles of both an input and an output at the same time.In fact,there exist some variables that work as inputs and outputs simultaneously and are called dual-role variables.Traditional DEA models cannot be used to appraise the performance of decision making units containing dual-role variables.The paper analyzes the structure and properties of the production systems comprising dual-role variables,and proposes a DEA model integrating dual-role variables.Finally the proposed model is illustrated to evaluate the efficiency of university departments.展开更多
Three data envelopment analysis (DEA) models were used to analyse the relative efficiencies of four AIDS treatments in AIDS Clinical Trial Group (ACTG) Study 193A(1 309 patients in total, classified into 4 age groups)...Three data envelopment analysis (DEA) models were used to analyse the relative efficiencies of four AIDS treatments in AIDS Clinical Trial Group (ACTG) Study 193A(1 309 patients in total, classified into 4 age groups). Results from the output-oriented BCC model show that Treatment 4 ( 600 mg of zidovudine plus 400 mg of didanosine plus 400 mg of nevirapine) is particularly efficient for age group 14—25, but not efficient for the older age groups; Treatment 1 (600 mg of zidovudine alternating monthly with 400 mg of didanosine)and Treatment 2 (600 mg of zidovudine plus 2.25 mg of zalcitabine) are efficient for the age groups 35—45 and 45— ; age group 25—35 does not have a particularly efficient treatment, but Treatments 1 and 2 are relatively good. The cost efficiency BCC model, which takes the treatment cost into account, gives similar results as the output-oriented model. Results from the indirect output-oriented BCC model, which allows the replacement among medicines, show that the efficiency of Treatment 2 has greatly decreased compared with that of the output-oriented model, and a set of optimal medicine amounts for different age groups is obtained.展开更多
In this study we examine the potential determinants of technical efficiency for the Tunisian commercial banking sector over the period of 1995–2017.First,we estimate banking technical efficiency with a radial and non...In this study we examine the potential determinants of technical efficiency for the Tunisian commercial banking sector over the period of 1995–2017.First,we estimate banking technical efficiency with a radial and non-radial bootstrap data envelopment analysis.For the radial technique,we use an input-oriented approach and for non-radial we use the Range Adjusted Measure(RAM).Second,we use a double bootstrapping regression technique to estimate the influence of a set of eventual determinants on technical efficiency.Finally,based on all possible regressions,we gauge the overall effect of each determinant.Our results reveal that the input-oriented and RAM approach gave somewhat similar results.We found that the return on equity,the expense to income ratio,the loan to deposit ratio,and the growth rate are insignificant to Tunisian banking technical efficiency.In particular,banking technical efficiency increases with capitalization and inflation,whereas,it decreases with size,number of bank branches,management to staff ratio,and loan to asset ratio.In addition,we identified evidence supporting the moderate success of the last decade of reforms and a noticeable one for the post-revolution reforms in helping improve banking technical efficiency.The post-revolution reforms,largely revolving around reinforcing the rules of good governance and banking supervision,coupled with the restructuring of public banks,were found to be insufficient to raise overall banking technical efficiency despite improvement in the technical efficiency of private banks.展开更多
In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problema...In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problematic in several situations,for example(a)when input proportions change in the long run,(b)when inputs are heterogeneous,and(c)when firms face ex-ante price uncertainty in making their production decisions.To address these situations,a scale elasticity evaluation was performed using a value-based cost efficiency model.However,this alternative value-based scale elasticity evaluation is sensitive to the uncertainty and variability underlying input and output data.Therefore,in this study,we introduce a stochastic cost-efficiency model based on chance-constrained programming to develop a value-based measure of the scale elasticity of firms facing data uncertainty.An illustrative empirical application to the Indian banking industry comprising 71 banks for eight years(1998–2005)was made to compare inferences about their efficiency and scale properties.The key findings are as follows:First,both the deterministic model and our proposed stochastic model yield distinctly different results concerning the efficiency and scale elasticity scores at various tolerance levels of chance constraints.However,both models yield the same results at a tolerance level of 0.5,implying that the deterministic model is a special case of the stochastic model in that it reveals the same efficiency and returns to scale characterizations of banks.Second,the stochastic model generates higher efficiency scores for inefficient banks than its deterministic counterpart.Third,public banks exhibit higher efficiency than private and foreign banks.Finally,public and old private banks mostly exhibit either decreasing or constant returns to scale,whereas foreign and new private banks experience either increasing or decreasing returns to scale.Although the application of our proposed stochastic model is illustrative,it can be potentially applied to all firms in the information and distribution-intensive industry with high fixed costs,which have ample potential for reaping scale and scope benefits.展开更多
The paper studies the non-zero slacks in data envelopment analysis. A procedure is developed for the treatment of non-zero slacks. DEA projections can be done just in one step.
Data envelopment analysis was applied to determine relative efficiencies of state-owned and joint-stock banks in Chongqing,P. R. China,during the years 1996 to 2000. We found that state-owned banks have low levels of ...Data envelopment analysis was applied to determine relative efficiencies of state-owned and joint-stock banks in Chongqing,P. R. China,during the years 1996 to 2000. We found that state-owned banks have low levels of efficiency when compared with joint-stock banks,but some joint-stock bank branches have low efficiency scores. Efficiency difference testing by using the Mann-Whitney rank order statistic indicates that the efficiency gap between state-owned and joint-stock banks is insignificant,which is characteristic of regional banks. We also presented some factors that may affect bank efficiency,and offer suggestions to improve bank management and efficiency.展开更多
文摘Failure mode and effects analysis (FMEA) offers a quick and easy way for identifying ranking-order for all failure modes in a system or a product. In FMEA the ranking methods is so called risk priority number (RPN), which is a mathematical product of severity (S), occurrence (0), and detection (D). One of major disadvantages of this ranking-order is that the failure mode with different combination of SODs may generate same RPN resulting in difficult decision-making. Another shortfall of FMEA is lacking of discerning contribution factors, which lead to insufficient information about scaling of improving effort. Through data envelopment analysis (DEA) technique and its extension, the proposed approach evolves the current rankings for failure modes by exclusively investigating SOD in lieu of RPN and to furnish with improving sca.les for SOD. The purpose of present study is to propose a state-of-the-art new approach to enhance assessment capabilities of failure mode and effects analysis (FMEA). The paper proposes a state-of-the-art new approach, robust, structured and useful in practice, for failure analysis.
文摘In the data envelopment analysis(DEA)literature,productivity change captured by the Malmquist productivity index,especially in terms of a deterministic environment and stochastic variability in inputs and outputs,has been somewhat ignored.Therefore,this study developed a firm-specific,DEA-based Malmquist index model to examine the efficiency and productivity change of banks in a stochastic environment.First,in order to estimate bank-specific efficiency,we employed a two-stage double bootstrap DEA procedure.Specifically,in the first stage,the technical efficiency scores of banks were calculated by the classic DEA model,while in the second stage,the double bootstrap DEA model was applied to determine the effect of the contextual variables on bank efficiency.Second,we applied a two-stage procedure for measuring productivity change in which the first stage included the estimation of stochastic technical efficiency and the second stage included the regression of the estimated efficiency scores on a set of explanatory variables that influence relative performance.Finally,an empirical investigation of the Iranian banking sector,consisting of 120 bank-year observations of 15 banks from 2014 to 2021,was performed to measure their efficiency and productivity change.Based on the findings,the explanatory variables(i.e.,the nonperforming loan ratio and the number of branches)indicated an inverse relationship with stochastic technical efficiency and productivity change.The implication of the findings is that,in order to improve the efficiency and productivity of banks,it is important to optimize these factors.
文摘Objective To evaluate the environmental and technical efficiencies of China's industrial sectors and provide appropriate advice for policy makers in the context of rapid economic growth and concurrent serious environmental damages caused by industrial pollutants. Methods A data of envelopment analysis (DEA) framework crediting both reduction of pollution outputs and expansion of good outputs was designed as a model to compute environmental efficiency of China's regional industrial systems. Results As shown by the geometric mean of environmental efficiency, if other inputs were made constant and good outputs were not to be improved, the air pollution outputs would have the potential to be decreased by about 60% in the whole China. Conclusion Both environmental and technical efficiencies have the potential to be greatly improved in China, which may provide some advice for policy-makers.
文摘Envelope analysis is an effective method for characterizing impulsive vibrations in wired condition monitoring(CM)systems. This paper depicts the implementation of envelope analysis on a wireless sensor node for obtaining a more convenient and reliable CM system. To maintain CM performances under the constraints of resources available in the cost effective Zigbee based wireless sensor network(WSN), a low cost cortex-M4 F microcontroller is employed as the core processor to implement the envelope analysis algorithm on the sensor node. The on-chip 12 bit analog-to-digital converter(ADC) working at 10 k Hz sampling rate is adopted to acquire vibration signals measured by a wide frequency band piezoelectric accelerometer. The data processing flow inside the processor is optimized to satisfy the large memory usage in implementing fast Fourier transform(FFT) and Hilbert transform(HT). Thus, the envelope spectrum can be computed from a data frame of 2048 points to achieve a frequency resolution acceptable for identifying the characteristic frequencies of different bearing faults. Experimental evaluation results show that the embedded envelope analysis algorithm can successfully diagnose the simulated bearing faults and the data transmission throughput can be reduced by at least 95% per frame compared with that of the raw data, allowing a large number of sensor nodes to be deployed in the network for real time monitoring.
基金supported by the National Natural Science Foundation of China (70961005)211 Project for Postgraduate Student Program of Inner Mongolia University+1 种基金National Natural Science Foundation of Inner Mongolia (2010Zd342011MS1002)
文摘The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs typically have some levels of fuzziness. To analyze a decision making unit (DMU) with fuzzy input/output data, previous studies provided the fuzzy DEA model and proposed an associated evaluating approach. Nonetheless, numerous deficiencies must still be improved, including the α- cut approaches, types of fuzzy numbers, and ranking techniques. Moreover, a fuzzy sample DMU still cannot be evaluated for the Fuzzy DEA model. Therefore, this paper proposes a fuzzy DEA model based on sample decision making unit (FSDEA). Five eval- uation approaches and the related algorithm and ranking methods are provided to test the fuzzy sample DMU of the FSDEA model. A numerical experiment is used to demonstrate and compare the results with those obtained using alternative approaches.
基金Project 70771105 supported by the National Natural Science Foundation of China
文摘In recent years improper allocation of safety input has prevailed in coal mines in China, which resulted in the frequent accidents in coal mining operation. A comprehensive assessment of the input efficiency of coal mine safety should lead to improved efficiency in the use of funds and management resources. This helps government and enterprise managers better understand how safety inputs are used and to optimize allocation of resources. Study on coal mine's efficiency assessment of safety input was con- ducted in this paper. A C^2R model with non-Archimedean infinitesimal vector based on output is established after consideration of the input characteristics and the model properties. An assessment of an operating mine was done using a specific set of input and output criteria. It is found that the safety input was efficient in 2002 and 2005 and was weakly efficient in 2003. However, the efficiency was relatively low in both 2001 and 2004. The safety input resources can be optimized and adjusted by means of projection theory. Such analysis shows that, on average in 2001 and 2004, 45% of the expended funds could have been saved. Likewise, 10% of the safety management and technical staff could have been eliminated and working hours devoted to safety could have been reduced by 12%. These conditions could have Riven the same results.
基金supported by the National Natural Science Foundation of China(No.71473099)
文摘China implemented the public hospital reform in 2012. This study utilized bootstrapping data envelopment analysis(DEA) to evaluate the technical efficiency(TE) and productivity of county public hospitals in Eastern, Central, and Western China after the 2012 public hospital reform. Data from 127 county public hospitals(39, 45, and 43 in Eastern, Central, and Western China, respectively) were collected during 2012–2015. Changes of TE and productivity over time were estimated by bootstrapping DEA and bootstrapping Malmquist. The disparities in TE and productivity among public hospitals in the three regions of China were compared by Kruskal–Wallis H test and Mann–Whitney U test. The average bias-corrected TE values for the four-year period were 0.6442, 0.5785, 0.6099, and 0.6094 in Eastern, Central, and Western China, and the entire country respectively, with average non-technical efficiency, low pure technical efficiency(PTE), and high scale efficiency found. Productivity increased by 8.12%, 0.25%, 12.11%, and 11.58% in China and its three regions during 2012–2015, and such increase in productivity resulted from progressive technological changes by 16.42%, 6.32%, 21.08%, and 21.42%, respectively. The TE and PTE of the county hospitals significantly differed among the three regions of China. Eastern and Western China showed significantly higher TE and PTE than Central China. More than 60% of county public hospitals in China and its three areas operated at decreasing return scales. There was a considerable space for TE improvement in county hospitals in China and its three regions. During 2012–2015, the hospitals experienced progressive productivity; however, the PTE changed adversely. Moreover, Central China continuously achieved a significantly lower efficiency score than Eastern and Western China. Decision makers and administrators in China should identify the causes of the observed inefficiencies and take appropriate measures to increase the efficiency of county public hospitals in the three areas of China, especially in Central China.
文摘In the last decade,ranking units in data envelopment analysis(DEA) has become the interests of many DEA researchers and a variety of models were developed to rank units with multiple inputs and multiple outputs.These performance factors(inputs and outputs) are classified into two groups:desirable and undesirable.Obviously,undesirable factors in production process should be reduced to improve the performance.Also,some of these data may be known only in terms of ordinal relations.While the models developed in the past are interesting and meaningful,they didn t consider both undesirable and ordinal factors at the same time.In this research,we develop an evaluating model and a ranking model to overcome some deficiencies in the earlier models.This paper incorporates undesirable and ordinal data in DEA and discusses the efficiency evaluation and ranking of decision making units(DMUs) with undesirable and ordinal data.For this purpose,we transform the ordinal data into definite data,and then we consider each undesirable input and output as desirable output and input,respectively.Finally,an application that shows the capability of the proposed method is illustrated.
文摘The application of data envelopment analysis (DEA) as a multiple criteria decision making (MCDM) technique has been gaining more and more attention in recent research. In the practice of applying DEA approach, the appearance of uncertainties on input and output data of decision making unit (DMU) might make the nominal solution infeasible and lead to the efficiency scores meaningless from practical view. This paper analyzes the impact of data uncertainty on the evaluation results of DEA, and proposes several robust DEA models based on the adaptation of recently developed robust optimization approaches, which would be immune against input and output data uncertainties. The robust DEA models developed are based on input-oriented and outputoriented CCR model, respectively, when the uncertainties appear in output data and input data separately. Furthermore, the robust DEA models could deal with random symmetric uncertainty and unknown-but-bounded uncertainty, in both of which the distributions of the random data entries are permitted to be unknown. The robust DEA models are implemented in a numerical example and the efficiency scores and rankings of these models are compared. The results indicate that the robust DEA approach could be a more reliable method for efficiency evaluation and ranking in MCDM problems.
文摘Data envelopment analysis (DEA) has become a standard non parametric approach to productivity analysis, especially to relative efficiency analysis of decision making units (DMUs). Extended to the prediction field, it can solve the prediction problem with multiple inputs and outputs which can not be solved easily by the regression analysis method.But the traditional DEA models can not solve the problem with undesirable outputs,so in this paper the inherent relationship between goal programming and the DEA method based on the relationship between multiple goal programming and goal programming is explored,and a mixed DEA model which can make all factors of inputs and undesirable outputs decrease in different proportions is built.And at the same time,all the factors of desirable outputs increase in different proportions.
基金supported by the National Natural Science Foundation of China(71471087)
文摘The classic data envelopment analysis(DEA) model is used to evaluate decision-making units'(DMUs) efficiency under the assumption that all DMUs are evaluated with the same criteria setting. Recently, new researches begin to focus on the efficiency analysis of non-homogeneous DMU arose by real practices such as the evaluation of departments in a university, where departments argue for the adoption of different criteria based on their disciplinary characteristics. A DEA procedure is proposed in this paper to address the efficiency analysis of two non-homogeneous DMU groups. Firstly, an analytical framework is established to compromise diversified input and output(IO) criteria from two nonhomogenous groups. Then, a criteria fusion operation is designed to obtain different DEA analysis strategies. Meanwhile, Friedman test is introduced to analyze the consistency of all efficiency results produced by different strategies. Next, ordered weighted averaging(OWA) operators are applied to integrate different information to reach final conclusions. Finally, a numerical example is used to illustrate the proposed method. The result indicates that the proposed method relaxes the restriction of the classical DEA model,and can provide more analytical flexibility to address different decision analysis scenarios arose from practical applications.
基金supported by the State Key Program of National Natural Science of China (No. 11232009)the Shanghai Leading Academic Discipline Project (No. S30106)
文摘One of the important issues in the system identification and the spectrum analysis is the frequency resolution, i.e., the capability of distinguishing between two or more closely spaced frequency components. In the modal identification by the empirical mode decomposition (EMD) method, because of the separating capability of the method, it is still a challenge to consistently and reliably identify the parameters of structures of which modes are not well separated. A new method is introduced to generate the intrin- sic mode functions (IMFs) through the filtering algorithm based on the wavelet packet decomposition (GIFWPD). In this paper, it is demonstrated that the CIFWPD method alone has a good capability of separating close modes, even under the severe condition beyond the critical frequency ratio limit which makes it impossible to separate two closely spaced harmonics by the EMD method. However, the GIFWPD-only based method is impelled to use a very fine sampling frequency with consequent prohibitive computational costs. Therefore, in order to decrease the computational load by reducing the amount of samples and improve the effectiveness of separation by increasing the frequency ratio, the present paper uses a combination of the complex envelope displacement analysis (CEDA) and the GIFWPD method. For the validation, two examples from the previous works are taken to show the results obtained by the GIFWPD-only based method and by combining the CEDA with the GIFWPD method.
基金Projects 50504015 supported by the National Natural Science Foundation of ChinaOC4499 by the Science Technology Foundation of China University ofMining & Technology
文摘Empirical Mode Decomposition (EMD) used to deal with non-linear and non-stable signals,is a time-frequency analytical method that has been developed recently. In this paper the EMD method is used to filter the noise from the stator current signal that arises when rotor bars break. Then a Hilbert Transform is used to extract the envelope from the filtered signal. With the EMD method again,the frequency band containing the fault characteris-tic-frequency components,2sf,can be extracted from the signal's envelope. The last step is to use a Fast Fourier Trans-form (FFT) method to extract the fault characteristic frequency. This frequency can be detected in actual data from a faulty motor,as shown by example. Compared to the Extend Park Vector method this method is proved to be more sen-sitive under light motor load.
文摘Public hospitals are the most important components of health systems and account for a large proportion of health resources in China. However, few researches on the efficiency assessment of public hospitals have been conducted in Tianjin, China. On the basis of the data of annual health service report in 2013 from the Ministry of Health, we measured the relative efficiency of the tertiary general public hospitals in Tianjin and estimated the magnitudes of output increase and/or input reduction by using data envelopment analysis to improve hospital efficiency. The main findings of this study indicate that more than half of the sample hospitals operate at a technical and scale efficiency, and the prevalent scale inefficiency is increasing returns to scale. Moreover, it is a prominent issue that health resource constraint and resource waste coexist. Health policy-makers and hospital administrators would need to address these problems by taking comprehensive measures such as optimizing the allocation of health resources, implementing hierarchical diagnosis and treatment, as well as innovating medical-service operating mechanism of public hospital to improve the people's wellbeing.
基金supported by the National Natural Science Foundation of China (7082100170801056)
文摘Traditional data envelopment analysis(DEA) theory assumes that decision variables are regarded as inputs or outputs,and no variable can play the roles of both an input and an output at the same time.In fact,there exist some variables that work as inputs and outputs simultaneously and are called dual-role variables.Traditional DEA models cannot be used to appraise the performance of decision making units containing dual-role variables.The paper analyzes the structure and properties of the production systems comprising dual-role variables,and proposes a DEA model integrating dual-role variables.Finally the proposed model is illustrated to evaluate the efficiency of university departments.
基金National Natural Science Foundation of China (No 10571134)
文摘Three data envelopment analysis (DEA) models were used to analyse the relative efficiencies of four AIDS treatments in AIDS Clinical Trial Group (ACTG) Study 193A(1 309 patients in total, classified into 4 age groups). Results from the output-oriented BCC model show that Treatment 4 ( 600 mg of zidovudine plus 400 mg of didanosine plus 400 mg of nevirapine) is particularly efficient for age group 14—25, but not efficient for the older age groups; Treatment 1 (600 mg of zidovudine alternating monthly with 400 mg of didanosine)and Treatment 2 (600 mg of zidovudine plus 2.25 mg of zalcitabine) are efficient for the age groups 35—45 and 45— ; age group 25—35 does not have a particularly efficient treatment, but Treatments 1 and 2 are relatively good. The cost efficiency BCC model, which takes the treatment cost into account, gives similar results as the output-oriented model. Results from the indirect output-oriented BCC model, which allows the replacement among medicines, show that the efficiency of Treatment 2 has greatly decreased compared with that of the output-oriented model, and a set of optimal medicine amounts for different age groups is obtained.
文摘In this study we examine the potential determinants of technical efficiency for the Tunisian commercial banking sector over the period of 1995–2017.First,we estimate banking technical efficiency with a radial and non-radial bootstrap data envelopment analysis.For the radial technique,we use an input-oriented approach and for non-radial we use the Range Adjusted Measure(RAM).Second,we use a double bootstrapping regression technique to estimate the influence of a set of eventual determinants on technical efficiency.Finally,based on all possible regressions,we gauge the overall effect of each determinant.Our results reveal that the input-oriented and RAM approach gave somewhat similar results.We found that the return on equity,the expense to income ratio,the loan to deposit ratio,and the growth rate are insignificant to Tunisian banking technical efficiency.In particular,banking technical efficiency increases with capitalization and inflation,whereas,it decreases with size,number of bank branches,management to staff ratio,and loan to asset ratio.In addition,we identified evidence supporting the moderate success of the last decade of reforms and a noticeable one for the post-revolution reforms in helping improve banking technical efficiency.The post-revolution reforms,largely revolving around reinforcing the rules of good governance and banking supervision,coupled with the restructuring of public banks,were found to be insufficient to raise overall banking technical efficiency despite improvement in the technical efficiency of private banks.
文摘In the nonparametric data envelopment analysis literature,scale elasticity is evaluated in two alternative ways:using either the technical efficiency model or the cost efficiency model.This evaluation becomes problematic in several situations,for example(a)when input proportions change in the long run,(b)when inputs are heterogeneous,and(c)when firms face ex-ante price uncertainty in making their production decisions.To address these situations,a scale elasticity evaluation was performed using a value-based cost efficiency model.However,this alternative value-based scale elasticity evaluation is sensitive to the uncertainty and variability underlying input and output data.Therefore,in this study,we introduce a stochastic cost-efficiency model based on chance-constrained programming to develop a value-based measure of the scale elasticity of firms facing data uncertainty.An illustrative empirical application to the Indian banking industry comprising 71 banks for eight years(1998–2005)was made to compare inferences about their efficiency and scale properties.The key findings are as follows:First,both the deterministic model and our proposed stochastic model yield distinctly different results concerning the efficiency and scale elasticity scores at various tolerance levels of chance constraints.However,both models yield the same results at a tolerance level of 0.5,implying that the deterministic model is a special case of the stochastic model in that it reveals the same efficiency and returns to scale characterizations of banks.Second,the stochastic model generates higher efficiency scores for inefficient banks than its deterministic counterpart.Third,public banks exhibit higher efficiency than private and foreign banks.Finally,public and old private banks mostly exhibit either decreasing or constant returns to scale,whereas foreign and new private banks experience either increasing or decreasing returns to scale.Although the application of our proposed stochastic model is illustrative,it can be potentially applied to all firms in the information and distribution-intensive industry with high fixed costs,which have ample potential for reaping scale and scope benefits.
文摘The paper studies the non-zero slacks in data envelopment analysis. A procedure is developed for the treatment of non-zero slacks. DEA projections can be done just in one step.
基金the National Science Fund for Distinguished Young Scholars from Natural Science Foundation of China (No.70525005).
文摘Data envelopment analysis was applied to determine relative efficiencies of state-owned and joint-stock banks in Chongqing,P. R. China,during the years 1996 to 2000. We found that state-owned banks have low levels of efficiency when compared with joint-stock banks,but some joint-stock bank branches have low efficiency scores. Efficiency difference testing by using the Mann-Whitney rank order statistic indicates that the efficiency gap between state-owned and joint-stock banks is insignificant,which is characteristic of regional banks. We also presented some factors that may affect bank efficiency,and offer suggestions to improve bank management and efficiency.