In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical...In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback.展开更多
The stability of underground entry-type excavations(UETEs)is of paramount importance for ensuring the safety of mining operations.As more engineering cases are accumulated,machine learning(ML)has demonstrated great po...The stability of underground entry-type excavations(UETEs)is of paramount importance for ensuring the safety of mining operations.As more engineering cases are accumulated,machine learning(ML)has demonstrated great potential for the stability evaluation of UETEs.In this study,a hybrid stacking ensemble method aggregating support vector machine(SVM),k-nearest neighbor(KNN),decision tree(DT),random forest(RF),multilayer perceptron neural network(MLPNN)and extreme gradient boosting(XGBoost)algorithms was proposed to assess the stability of UETEs.Firstly,a total of 399 historical cases with two indicators were collected from seven mines.Subsequently,to pursue better evaluation performance,the hyperparameters of base learners(SVM,KNN,DT,RF,MLPNN and XGBoost)and meta learner(MLPNN)were tuned by combining a five-fold cross validation(CV)and simulated annealing(SA)approach.Based on the optimal hyperparameters configuration,the stacking ensemble models were constructed using the training set(75%of the data).Finally,the performance of the proposed approach was evaluated by two global metrics(accuracy and Cohen’s Kappa)and three within-class metrics(macro average of the precision,recall and F1-score)on the test set(25%of the data).In addition,the evaluation results were compared with six base learners optimized by SA.The hybrid stacking ensemble algorithm achieved better comprehensive performance with the accuracy,Kappa coefficient,macro average of the precision,recall and F1-score were 0.92,0.851,0.885,0.88 and 0.883,respectively.The rock mass rating(RMR)had the most important influence on evaluation results.Moreover,the critical span graph(CSG)was updated based on the proposed model,representing a significant improvement compared with the previous studies.This study can provide valuable guidance for stability analysis and risk management of UETEs.However,it is necessary to consider more indicators and collect more extensive and balanced dataset to validate the model in future.展开更多
The stability of underground entry-type excavations will directly affect the working environment and the safety of staff.Empirical critical span graphs and traditional statistics learning methods can not meet the requ...The stability of underground entry-type excavations will directly affect the working environment and the safety of staff.Empirical critical span graphs and traditional statistics learning methods can not meet the requirements of high accuracy for stability assessment of entry-type excavations.Therefore,this study proposes a new prediction method based on machine learning to scientifically adjust the critical span graph.Accordingly,the particle swarm optimization(PSO)algorithm is used to optimize the core parameters of the gradient boosting decision tree(GBDT),abbreviated as PSO-GBDT.Moreover,the classification performance of eight other classifiers including GDBT,k-nearest neighbors(KNN),two kinds of support vector machines(SVM),Gaussian naive Bayes(GNB),logistic regression(LR)and linear discriminant analysis(LDA)are also applied to compare with the proposed model.Findings revealed that compared with the other eight models,the prediction performance of PSO-GBDT is undoubtedly the most reliable,and its classification accuracy is up to 0.93.Therefore,this model has great potential to provide a more scientific and accurate choice for the stability prediction of underground excavations.In addition,each classification model is used to predict the stability category of several grid points divided by the critical span graph,and the updated critical span graph of each model is discussed in combination with previous studies.The results show that the PSO-GBDT model has the advantages of being scientific,accurate and efficient in updating the critical span graph,and its output decision boundary has strict theoretical support,which can help mine operators make favorable economic decisions.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42177164)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073)the Outstanding Youth Project of Hunan Provincial Department of Education,China(Grant No.23B0008).
文摘In underground mining,especially in entry-type excavations,the instability of surrounding rock structures can lead to incalculable losses.As a crucial tool for stability analysis in entry-type excavations,the critical span graph must be updated to meet more stringent engineering requirements.Given this,this study introduces the support vector machine(SVM),along with multiple ensemble(bagging,adaptive boosting,and stacking)and optimization(Harris hawks optimization(HHO),cuckoo search(CS))techniques,to overcome the limitations of the traditional methods.The analysis indicates that the hybrid model combining SVM,bagging,and CS strategies has a good prediction performance,and its test accuracy reaches 0.86.Furthermore,the partition scheme of the critical span graph is adjusted based on the CS-BSVM model and 399 cases.Compared with previous empirical or semi-empirical methods,the new model overcomes the interference of subjective factors and possesses higher interpretability.Since relying solely on one technology cannot ensure prediction credibility,this study further introduces genetic programming(GP)and kriging interpolation techniques.The explicit expressions derived through GP can offer the stability probability value,and the kriging technique can provide interpolated definitions for two new subclasses.Finally,a prediction platform is developed based on the above three approaches,which can rapidly provide engineering feedback.
基金supported by the National Natural Science Foundation of China(Grant No.52204117)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ40601).
文摘The stability of underground entry-type excavations(UETEs)is of paramount importance for ensuring the safety of mining operations.As more engineering cases are accumulated,machine learning(ML)has demonstrated great potential for the stability evaluation of UETEs.In this study,a hybrid stacking ensemble method aggregating support vector machine(SVM),k-nearest neighbor(KNN),decision tree(DT),random forest(RF),multilayer perceptron neural network(MLPNN)and extreme gradient boosting(XGBoost)algorithms was proposed to assess the stability of UETEs.Firstly,a total of 399 historical cases with two indicators were collected from seven mines.Subsequently,to pursue better evaluation performance,the hyperparameters of base learners(SVM,KNN,DT,RF,MLPNN and XGBoost)and meta learner(MLPNN)were tuned by combining a five-fold cross validation(CV)and simulated annealing(SA)approach.Based on the optimal hyperparameters configuration,the stacking ensemble models were constructed using the training set(75%of the data).Finally,the performance of the proposed approach was evaluated by two global metrics(accuracy and Cohen’s Kappa)and three within-class metrics(macro average of the precision,recall and F1-score)on the test set(25%of the data).In addition,the evaluation results were compared with six base learners optimized by SA.The hybrid stacking ensemble algorithm achieved better comprehensive performance with the accuracy,Kappa coefficient,macro average of the precision,recall and F1-score were 0.92,0.851,0.885,0.88 and 0.883,respectively.The rock mass rating(RMR)had the most important influence on evaluation results.Moreover,the critical span graph(CSG)was updated based on the proposed model,representing a significant improvement compared with the previous studies.This study can provide valuable guidance for stability analysis and risk management of UETEs.However,it is necessary to consider more indicators and collect more extensive and balanced dataset to validate the model in future.
基金the National Science Foundation of China(Grant No.42177164)the Distinguished Youth Science Foundation of Hunan Province of China(Grant No.2022JJ10073)the Innovation-Driven Project of Central South University(Grant No.2020CX040).
文摘The stability of underground entry-type excavations will directly affect the working environment and the safety of staff.Empirical critical span graphs and traditional statistics learning methods can not meet the requirements of high accuracy for stability assessment of entry-type excavations.Therefore,this study proposes a new prediction method based on machine learning to scientifically adjust the critical span graph.Accordingly,the particle swarm optimization(PSO)algorithm is used to optimize the core parameters of the gradient boosting decision tree(GBDT),abbreviated as PSO-GBDT.Moreover,the classification performance of eight other classifiers including GDBT,k-nearest neighbors(KNN),two kinds of support vector machines(SVM),Gaussian naive Bayes(GNB),logistic regression(LR)and linear discriminant analysis(LDA)are also applied to compare with the proposed model.Findings revealed that compared with the other eight models,the prediction performance of PSO-GBDT is undoubtedly the most reliable,and its classification accuracy is up to 0.93.Therefore,this model has great potential to provide a more scientific and accurate choice for the stability prediction of underground excavations.In addition,each classification model is used to predict the stability category of several grid points divided by the critical span graph,and the updated critical span graph of each model is discussed in combination with previous studies.The results show that the PSO-GBDT model has the advantages of being scientific,accurate and efficient in updating the critical span graph,and its output decision boundary has strict theoretical support,which can help mine operators make favorable economic decisions.