Soot is a flocculent carbon nanoparticle that results the imperfect combustion of fossil fuel,and numerous studies are dedicated to the reduction of soot production to alleviate the associated environmental problems.H...Soot is a flocculent carbon nanoparticle that results the imperfect combustion of fossil fuel,and numerous studies are dedicated to the reduction of soot production to alleviate the associated environmental problems.However,soot as a functional material is also widely used in energy storage and superhydrophobic materials.As a partial oxidation technology,the entrained flow coal gasification process will produce part of the soot.It is important to separate soot from the coal gasification fine slag(CGFS)and understand its structural characteristics for soot utilization.For this purpose,two industrial typical pulverized coal gasification fine slag(PCGFS)and coal-water slurry gasification fine slag(WCGFS)were selected for this study.The results showed that both fine slags were rich in soot,and the dry ash free mass fraction of soot in PCGFS and WCGFS was 6.24%and 2.91%,respectively,and the soot of PCGFS had a hollow carbon nanosphere morphology,while the soot of WCGFS showed a flocculent irregular morphology.The average fringe length,fringe tortuosity,and fringe spacing of the soot were 0.84 nm,1.21,and 0.45 nm,respectively.Compared to the WCGFS,the soot particles of PCGFS have less continuity of molecular bonds within the lattice,the larger the defects within the lattice,the fewer isolated lattice carbon layers there are.This study provides important theoretical support for understanding the structural characteristics and next applications of soot in the entrained flow coal gasification fine slag.展开更多
Entrained flow adsorption using activated carbon as the adsorbent is widely adopted for PCDDs/Fs-abatement in municipal solid waste incineration (MSWI) process. The effects of operating parameters including flue gas t...Entrained flow adsorption using activated carbon as the adsorbent is widely adopted for PCDDs/Fs-abatement in municipal solid waste incineration (MSWI) process. The effects of operating parameters including flue gas temperature, feeding rate of activated carbon, polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/Fs) concentration at the inlet of the air pollution control device (APCD), filter materials, pressure drop on PCDDs/Fs removal efficiency are reviewed and commented upon in this paper. Evaluation on the various mechanistic models for entrained flow adsorption is carried out based on the computational simulation in terms of the actual operating condition and theoretical analysis. Finally, an advancement of en- trained flow adsorption in combination of dual bag filter is introduced.展开更多
The gasification kinetic modelling of two Victorian brown coal(Yallourn and Maddingley)chars and the validity for entrained flow gasification were investigated in this study.The study was conducted in a thermogravimet...The gasification kinetic modelling of two Victorian brown coal(Yallourn and Maddingley)chars and the validity for entrained flow gasification were investigated in this study.The study was conducted in a thermogravimetric analyzer(TGA)at 750–1100℃,30%–90%CO_(2)concentration using different char particle sizes within 20–106 mm.It was found that random pore model and modified volumetric model are applicable for TGA results,but volumetric model and grain model are not.The effect of particle size under106 mm on gasification rate is very limited.Activation energies of Maddingley char and Yallourn char in CO_(2)gasification are 219–220 and 197–208 k J/mol,respectively.The pre-exponential factors are in the same order of magnitude,and they increased as particle size decreased.A mathematical model was developed to predict carbon conversion over time for entrained flow gasification of Victorian brown coal chars at 1000–1400℃.展开更多
Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results s...Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results show that: with the increase of oxygen concentration, the ignition temperature of four coals greatly decreases and the low volatile coals decrease faster; with the increase of oxygen concentration, the ignition mode of pulverized coal has an obviously transformation from homogeneous ignition to heterogeneous ignition, and the corresponding oxygen concentrations are about 40% and 50%-60% respectively for bituminous coal and lignite, and both about 30% for lean coal and anthracite; with the increase of oxygen concentration, the optimal pulverized coal concentrations of bituminous coal and lignite increase firstly and then decrease, but for lean coal and anthracite, the optimal pulverized coal concentrations decrease slowly with the increase of oxygen concentration.展开更多
The process flow and the main devices of a new two-stage dry-fed coal gasification pilot plant with a throughout of 36 t/d are introduced in this paper. For comparison with the traditional one-stage gasifiers, the inf...The process flow and the main devices of a new two-stage dry-fed coal gasification pilot plant with a throughout of 36 t/d are introduced in this paper. For comparison with the traditional one-stage gasifiers, the influences of the coal feed ratio between two stages on the performance of the gasifier are detailedly studied by a series of experiments. The results reveal that the two-stage gasification decreases the temperature of the syngas at the outlet of the gasifier, simplifies the gasification process, and reduces the size of the syngas cooler. Moreover, the cold gas efficiency of the gasifier can be improved by using the two-stage gasification. In our experiments, the efficiency is about 3%-6% higher than the existing one-stage gasifiers.展开更多
Gasification technology is suggested to utilize asphalt particles, which are produced in the heavy oil deep separation process of using coupled low temperature separation of solvent and post extraction residue. In thi...Gasification technology is suggested to utilize asphalt particles, which are produced in the heavy oil deep separation process of using coupled low temperature separation of solvent and post extraction residue. In this work, the asphalt particles were first slurried with water and then gasified to produce synthesis gas. The gasification process of asphalt water slurry in an entrained flow gasifier was simulated using a three-dimensional computational fluid dynamics (CFD) model based on an Eulerian- Lagrangian method. The trajectories and residence time of asphalt particles, and the reaction rates, gas species distribution, temperature field and carbon conversion in the entrained flow gasifier were obtained. The predicted results indicated that the asphalt water slurry was a good feedstock for gasification. Moreover, the effects of particle size, oxygen equivalence ratio, and mass content of asphalt particles on the gasification performance of asphalt water slurry were investigated. These results are helpful for industrial application of asphalt water slurry gasification technology.展开更多
Early in 1953 the experiments by Peterka proved that air entrainment has effects on decreasing cavitation damage. This technology has been widely used in the release works of high dams since the inception of air entra...Early in 1953 the experiments by Peterka proved that air entrainment has effects on decreasing cavitation damage. This technology has been widely used in the release works of high dams since the inception of air entrainment in the Grand Goulee Dam in 1960. Behavior, mechanism and application of air entrainment for cavitation damage control have been investigated for over half century. However, severe cavitation damage happened due to complex mechanism of air entrainment. The effects of air entrainment are related to many factors, including geometric parameters, hydraulic parameters and entrained air manners. In the present work an experimental set-up for air entrainment was specially designed, the behavior of reducing cavitation damage was experimentally investigated in the three aspects of entrained air pressure, air tube aera and air tube number. The results show that magnitude of reduction of cavitation damage is closely related to the entrained air tube number as well as entrained air pressure, air tube aera, and that the effect through three air tubes is larger than that through single air tube although the entrained air tubes have the same sum of tube aera, that is, 1 + 1 + 1 〉 3. Therefore, it is important to design an effective manner of air entrainment.展开更多
The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and producti...The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and production of coal gasification slag.The aim of this work is to explore the feasibility of high-temperature combustion and melting technology for treating coal gasification fine slag and determine the important parameters of system operation.The flow properties and molten slag structure characteristics of three fine slags from different entrained flow gasifiers were studied.Depending on the melting mechanism of melt-dissolution,the melting time of fine slags is short.Three fine slags all produce glassy slags,which is conducive to slag discharge.The degree of polymerization of silicate melt is proportionate to the amount of SiO_(2)in the slag.A part of Al^(3+)exist in the form of[AlO_(4)]^(5-)because of the effect of CaO and Na_(2)O,as the network former.Finally,the degree of polymerization of the three type molten slag was calculated by considering the role of Si and Al in molten slag and the property of each one.展开更多
The circadian system of mammals is composed of a hierarchical network of oscillators,including a core clock and peripheral clocks.The core clock receives an external photic signal and transmits it to the peripheral cl...The circadian system of mammals is composed of a hierarchical network of oscillators,including a core clock and peripheral clocks.The core clock receives an external photic signal and transmits it to the peripheral clocks,which,in turn,feed back to the core clock.Aging affects various functions of organisms including the circadian system.Entrainment displays the adaptability of the circadian system to changes in the external environment.However,there is currently no systematic study on the effects of aging on the entrainment capability.To explore the influencing mechanism,we develop a mathematical model of two populations of Goodwin oscillators,which represent the core clock and peripheral clocks.Based on numerical simulations,we conduct a detailed study on the impact of three aging-related factors on the entrainment capability represented by the entrainment range,entrainment time,and entrainment phase.The results indicate that the decrease in the sensitivity of suprachiasmatic nucleus(SCN)to light and the coupling strength from the SCN to the peripheral clocks due to aging increase the phase difference between the core and peripheral clocks,narrow the entrainment range,and prolong the entrainment time.A reduction in the coupling strength within the SCN has little effect on the three aspects mentioned above but increases the entrainment phase.Overall,aging reduces the circadian system's adaptability to the external environment,and the increased entrainment phase may lead to corresponding sleep problems.We also show that modulating the internal coupling strength in the peripheral clocks can mitigate aging effects;this provides an idea for using peripheral clocks to adjust the core clock,while also revealing new insights into the interaction between aging and the elasticity of the circadian system.This mechanism provides theoretical support for treating or alleviating circadian system disorders or sleep problems caused by aging.展开更多
In froth flotation,overall recovery of the floatable particles consists of true recovery and recovery by entrainment,where entrainment refers to the non-selective recovery of particles in the concentrate.To understand...In froth flotation,overall recovery of the floatable particles consists of true recovery and recovery by entrainment,where entrainment refers to the non-selective recovery of particles in the concentrate.To understand and optimize the flotation process with regard to process conditions,it is essential to distinguish true flotation recovery from overall recovery.The established methods rely on tailored flotation experiments,unrealistic flotation conditions,or using external tracers which can be different in density and crystal structure to the mineral(s) of interest.This study presents an approach to utilize naturally occuring suitable tracers to estimate the entrainment component from overall recovery of individual particles by establishing a relationship between their settling velocity coefficient and recovery probability.Recovery probabilities of individual particles are computed using particle-based separation modelling.The approach is demonstrated for a copper ore,where naturally occurring rutile was used as the tracer to determine the entrained component of the overall recovery of chalcopyrite particles.Laboratory flotation experiments revealed that entrainment accounted for up to 6% of the overall recovery probability of fully liberated chalcopyrite particles in the fine size fractions.This approach provides a practical method for entrainment correction enabling a more accurate evaluation of true flotation recovery.展开更多
Background: Brainwave entrainment using binaural beats has shown potential in treating tinnitus, but most studies have focused on one-month treatment durations. Objective: This study aimed to evaluate the time-bound e...Background: Brainwave entrainment using binaural beats has shown potential in treating tinnitus, but most studies have focused on one-month treatment durations. Objective: This study aimed to evaluate the time-bound efficacy of brainwave entrainment using binaural beats, comparing it to a standard tinnitus masker over a three-month duration. Method: Sixty-three individuals having tinnitus with normal hearing sensitivity were enrolled in the study. The participants were categorized into groups Ⅰ, Ⅱ, and Ⅲ. They were provided with delta(4 Hz) and alpha(10 Hz) frequency binaural beats and standard tinnitus masker, respectively, for a duration of three months. The tinnitus handicap inventory(THI) scores, Visual analogue scale(VAS) rating for tinnitus distress, and quality of life parameters were measured. The reductions obtained for each measure during the end of the first, second and third month were measured and compared across the groups. Results: All three groups showed considerable reductions in THI and VAS scores and improvements in the quality of life domains, focusing on physical and psychological health. However, groups Ⅰ and Ⅱ, who received binaural beats stimuli, showed higher benefits than those who received standard tinnitus masker. Conclusion: The results of the current study indicated that binaural beats can be an effective treatment technique for individuals with tinnitus having normal hearing sensitivity. Clinicians and otology/audiology practitioners shall adopt this innovative treatment after further validating these findings.展开更多
This study investigates the air–water interaction dynamics in jet streams,with particular emphasis on the transition from the cavity to the far-field regions.A dual-tip conductivity phase-detection probe was employed...This study investigates the air–water interaction dynamics in jet streams,with particular emphasis on the transition from the cavity to the far-field regions.A dual-tip conductivity phase-detection probe was employed to analyze four distinct downstream water levels.Based on the development of the cross-sectional mean air concentration,the jet flow was divided into four distinct regions:the jet length region,impact region,splash region,and far-field region.The results demonstrate varying trends in the evolution of the mean air concentration and maximum bubble frequency.Downstream water levels exerted a significant influence on these parameters in the splash and far-field regions,whereas minimal variation was observed in the impact region.Additionally,notable differences were identified in the probability density function of water droplets between the cavity and downstream regions.Furthermore,downstream water depth was found to have a negligible effect on the proportion of small-sized droplets in both the impact and splash regions.展开更多
Tip vortex cavitation(TVC)is a critical phenomenon in propeller and turbine machinery.While much of the existing research on TVC has focused on its inception,the mechanisms driving its continuous growth remain under-e...Tip vortex cavitation(TVC)is a critical phenomenon in propeller and turbine machinery.While much of the existing research on TVC has focused on its inception,the mechanisms driving its continuous growth remain under-explored.In this study,we propose a comprehensive theoretical model that integrates both gas diffusion and free nuclei entrainment to better understand the slow growth of tip vortex cavity.The efficacy of this model is validated by comparing its predicted temporal evolution of cavity size with experimental data,under both nuclei-depleted and large nuclei-injection conditions.Additionally,the model is used to further examine the individual effects of nuclei content and size on tip vortex cavity growth.Results reveal that,in sub-saturated nuclei flow,two critical equilibrium values for cavity size are identified:one determined by the balance of dissolved gases inside the cavity and the surrounding fluid,and the other by the balance between dissolved gases inside the cavity and the surrounding gas nuclei.The cavity stability size gradually shifts from the first to the second critical value as the gas nuclei content increases.However,since the model does not consider the destabilization mechanism of the cavity,the cavity may destabilize before reaching the second critical value.Meanwhile,the cavity growth rate increases significantly with increasing gas nuclei size.This work not only provides a comprehensive explanation for the experimental observations,but also provides new insights into the hysteresis phenomenon observed in TVC.展开更多
This paper presents entrainment mechanism, and transported and diffusioncharacteristics at the point of entry of submerged jet. The profiles of both velocity andconcentration within the air-water mixing layer were the...This paper presents entrainment mechanism, and transported and diffusioncharacteristics at the point of entry of submerged jet. The profiles of both velocity andconcentration within the air-water mixing layer were theoretically deduced. And the comparisonsbetween theoretical values and measured data were made. Results show that the velocity profilewithin the air-water mixing layer exhibits a form of error function. The concentrations of airentrainment in the internal and external regions of air-water mixing layer correspond to Gaussiandistribution.展开更多
The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameteri...The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.展开更多
This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification ...This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.展开更多
Water quality has been found to significantly influence the flotation operations due to the alteration of surface properties of minerals.The effect of cations on the flotation of RE minerals has been studied,however,t...Water quality has been found to significantly influence the flotation operations due to the alteration of surface properties of minerals.The effect of cations on the flotation of RE minerals has been studied,however,there are still very limited information regarding the effect of anions.The present study examined the impact of specific anions such as Cl^(-),SO_(4)^(2-),and HCO_(3)^(-)on the flotation performance of rare earth(RE) ore.This study integrates flotation experiments,rheology measurements,entrainment experiments,zeta potential measurements and settling experiments.It is observed that an increase in the concentration of these anions lead to a decrease in the recovery of RE minerals and an increase in the recovery of FeO minerals and thus negatively affecting flotation efficiency.This adverse effect is most pronounced with Cl^(-)and least noticeable with HCO_(3)^(-).An increase in the non-selective entrainment of gangue minerals is observed when the flotation pulp has higher viscosity.The reduction in the zeta potential of fine particles in the presence of these results in a higher pulp viscosity due to increased attractive forces between particles.These findings were verified by settling experiments and calculations based on the DLVO theory.展开更多
Shallow convection plays an important role in transporting heat and moisture from the near-surface to higher altitudes,yet its parameterization in numerical models remains a great challenge,partly due to the lack of h...Shallow convection plays an important role in transporting heat and moisture from the near-surface to higher altitudes,yet its parameterization in numerical models remains a great challenge,partly due to the lack of high-resolution observations.This study describes a large eddy simulation(LES)dataset for four shallow convection cases that differ primarily in inversion strength,which can be used as a surrogate for real data.To reduce the uncertainty in LES modeling,three different large eddy models were used,including SAM(System for Atmospheric Modeling),WRF(Weather Research and Forecasting model),and UCLA-LES.Results show that the different models generally exhibit similar behavior for each shallow convection case,despite some differences in the details of the convective structure.In addition to grid-averaged fields,conditionally sampled variables,such as in-cloud moisture and vertical velocity,are also provided,which are indispensable for calculation of the entrainment/detrainment rate.Considering the essentiality of the entraining/detraining process in the parameterization of cumulus convection,the dataset presented in this study is potentially useful for validation and improvement of the parameterization of shallow convection.展开更多
The element iron limitation is one of the crucial factors contributing to high nutrient low chlorophyll in the Southern Ocean(SO).Mixed layer dynamics regulate the availability of iron to phytoplankton.In this paper,w...The element iron limitation is one of the crucial factors contributing to high nutrient low chlorophyll in the Southern Ocean(SO).Mixed layer dynamics regulate the availability of iron to phytoplankton.In this paper,we investigate the influence of surface iron supplementation triggered by the mixed layer depth(MLD)variation on chlorophyll-a(Chl-a)concentration in the SO on seasonal and interannual timescales.This analysis is based on the Biogeochemical Southern Ocean State Estimate for the period from 2013 to 2021.We provide a comprehensive and systematic mapping of the regions within the SO,where Chl-a is affected by iron input related to MLD deepening.The relationship between the MLD and the Chl-a varies with the latitude on the seasonal time scale.Both the MLD and sea ice melting affect the distribution of Chl-a.On the interannual scale,iron supply due to MLD deepening occurs primarily north of 60°S.Horizontal advection-induced entrainment enhances the surface iron input during the austral summer,which favors Chl-a increase.In addition to the MLD,the melting of sea ice and cooling of the sea surface can also alter iron input and subsequently affect Chl-a distribution in the austral summer.During the austral winter,entrainment can boost iron stocks,stimulating a subsequent spring increase of Chl-a in the SO.Furthermore,sea surface temperature declines during the austral winter,promoting an increased iron supply and creating favorable conditions for the subsequent spring Chl-a increase in the SO.展开更多
To study the hydrodynamic characteristics of gas-solid-phase flow in a pulse riser,a dense discrete particle model considering particle collisions and solid volume fraction is used.The core-annular flow in the enlarge...To study the hydrodynamic characteristics of gas-solid-phase flow in a pulse riser,a dense discrete particle model considering particle collisions and solid volume fraction is used.The core-annular flow in the enlarged-diameter section of the pulse riser is described,which can be destroyed with a high superficial gas velocity.The particle trajectory crossing effect and particle-particle and particle-wall collisions in the reduced-diameter section of the pulse riser can also destroy the core-annular flow and enhance the gas-solid interaction.The solid volume fraction exhibits an S-type distribution at different solid mass rates.The distribution of axial velocity,radial velocity,and relative slip velocity is investigated by analyzing the simulated results at different pulse riser diameter ratios.A suitable pulse riser diameter ratio can improve the performance of the pulse riser.展开更多
基金supported by the National Natural Science Foundation of China(22168032,21968024)the National Key Research and Development Program of China(2023YFC3904302).
文摘Soot is a flocculent carbon nanoparticle that results the imperfect combustion of fossil fuel,and numerous studies are dedicated to the reduction of soot production to alleviate the associated environmental problems.However,soot as a functional material is also widely used in energy storage and superhydrophobic materials.As a partial oxidation technology,the entrained flow coal gasification process will produce part of the soot.It is important to separate soot from the coal gasification fine slag(CGFS)and understand its structural characteristics for soot utilization.For this purpose,two industrial typical pulverized coal gasification fine slag(PCGFS)and coal-water slurry gasification fine slag(WCGFS)were selected for this study.The results showed that both fine slags were rich in soot,and the dry ash free mass fraction of soot in PCGFS and WCGFS was 6.24%and 2.91%,respectively,and the soot of PCGFS had a hollow carbon nanosphere morphology,while the soot of WCGFS showed a flocculent irregular morphology.The average fringe length,fringe tortuosity,and fringe spacing of the soot were 0.84 nm,1.21,and 0.45 nm,respectively.Compared to the WCGFS,the soot particles of PCGFS have less continuity of molecular bonds within the lattice,the larger the defects within the lattice,the fewer isolated lattice carbon layers there are.This study provides important theoretical support for understanding the structural characteristics and next applications of soot in the entrained flow coal gasification fine slag.
基金Project supported by the National Basic Research Program (973) of China (No. G1999022211) and the National Natural Science Founda-tion of China (No. N59836210)
文摘Entrained flow adsorption using activated carbon as the adsorbent is widely adopted for PCDDs/Fs-abatement in municipal solid waste incineration (MSWI) process. The effects of operating parameters including flue gas temperature, feeding rate of activated carbon, polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/Fs) concentration at the inlet of the air pollution control device (APCD), filter materials, pressure drop on PCDDs/Fs removal efficiency are reviewed and commented upon in this paper. Evaluation on the various mechanistic models for entrained flow adsorption is carried out based on the computational simulation in terms of the actual operating condition and theoretical analysis. Finally, an advancement of en- trained flow adsorption in combination of dual bag filter is introduced.
文摘The gasification kinetic modelling of two Victorian brown coal(Yallourn and Maddingley)chars and the validity for entrained flow gasification were investigated in this study.The study was conducted in a thermogravimetric analyzer(TGA)at 750–1100℃,30%–90%CO_(2)concentration using different char particle sizes within 20–106 mm.It was found that random pore model and modified volumetric model are applicable for TGA results,but volumetric model and grain model are not.The effect of particle size under106 mm on gasification rate is very limited.Activation energies of Maddingley char and Yallourn char in CO_(2)gasification are 219–220 and 197–208 k J/mol,respectively.The pre-exponential factors are in the same order of magnitude,and they increased as particle size decreased.A mathematical model was developed to predict carbon conversion over time for entrained flow gasification of Victorian brown coal chars at 1000–1400℃.
文摘Four different pulverized coals have been used to study the effects of oxygen concentration on combustion characteristics under different enriched-oxygen conditions by entrained flow reactor experiments. The results show that: with the increase of oxygen concentration, the ignition temperature of four coals greatly decreases and the low volatile coals decrease faster; with the increase of oxygen concentration, the ignition mode of pulverized coal has an obviously transformation from homogeneous ignition to heterogeneous ignition, and the corresponding oxygen concentrations are about 40% and 50%-60% respectively for bituminous coal and lignite, and both about 30% for lean coal and anthracite; with the increase of oxygen concentration, the optimal pulverized coal concentrations of bituminous coal and lignite increase firstly and then decrease, but for lean coal and anthracite, the optimal pulverized coal concentrations decrease slowly with the increase of oxygen concentration.
基金This work was supported by the National High-Tech Research and Development Plan of China (No2003AA522030)
文摘The process flow and the main devices of a new two-stage dry-fed coal gasification pilot plant with a throughout of 36 t/d are introduced in this paper. For comparison with the traditional one-stage gasifiers, the influences of the coal feed ratio between two stages on the performance of the gasifier are detailedly studied by a series of experiments. The results reveal that the two-stage gasification decreases the temperature of the syngas at the outlet of the gasifier, simplifies the gasification process, and reduces the size of the syngas cooler. Moreover, the cold gas efficiency of the gasifier can be improved by using the two-stage gasification. In our experiments, the efficiency is about 3%-6% higher than the existing one-stage gasifiers.
基金support by the National Basic Research Program (Grant No. 2010CB226906)the Science Foundation of China University of Petroleum, Beijing (No. KYJJ2012-03-01)
文摘Gasification technology is suggested to utilize asphalt particles, which are produced in the heavy oil deep separation process of using coupled low temperature separation of solvent and post extraction residue. In this work, the asphalt particles were first slurried with water and then gasified to produce synthesis gas. The gasification process of asphalt water slurry in an entrained flow gasifier was simulated using a three-dimensional computational fluid dynamics (CFD) model based on an Eulerian- Lagrangian method. The trajectories and residence time of asphalt particles, and the reaction rates, gas species distribution, temperature field and carbon conversion in the entrained flow gasifier were obtained. The predicted results indicated that the asphalt water slurry was a good feedstock for gasification. Moreover, the effects of particle size, oxygen equivalence ratio, and mass content of asphalt particles on the gasification performance of asphalt water slurry were investigated. These results are helpful for industrial application of asphalt water slurry gasification technology.
基金supported by the National Natural Science Foundation of China (Grant No.50879021)the National Science Fund for Distinguished Young Scholars (Grant No.50925932)the Ministry of Science and Technology of China (Grant No.2008BAB19B04)
文摘Early in 1953 the experiments by Peterka proved that air entrainment has effects on decreasing cavitation damage. This technology has been widely used in the release works of high dams since the inception of air entrainment in the Grand Goulee Dam in 1960. Behavior, mechanism and application of air entrainment for cavitation damage control have been investigated for over half century. However, severe cavitation damage happened due to complex mechanism of air entrainment. The effects of air entrainment are related to many factors, including geometric parameters, hydraulic parameters and entrained air manners. In the present work an experimental set-up for air entrainment was specially designed, the behavior of reducing cavitation damage was experimentally investigated in the three aspects of entrained air pressure, air tube aera and air tube number. The results show that magnitude of reduction of cavitation damage is closely related to the entrained air tube number as well as entrained air pressure, air tube aera, and that the effect through three air tubes is larger than that through single air tube although the entrained air tubes have the same sum of tube aera, that is, 1 + 1 + 1 〉 3. Therefore, it is important to design an effective manner of air entrainment.
基金financially supported by Class A Strategic Pilot Science and Technology Project,Chinese Academy of Sciences(Grant No.XDA21040602)the National Natural Science Foundation of China(Grant No.U1810127)the Youth Innovation Promotion Association,Chinese Academy of Science(Grant No.Y201932)。
文摘The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and production of coal gasification slag.The aim of this work is to explore the feasibility of high-temperature combustion and melting technology for treating coal gasification fine slag and determine the important parameters of system operation.The flow properties and molten slag structure characteristics of three fine slags from different entrained flow gasifiers were studied.Depending on the melting mechanism of melt-dissolution,the melting time of fine slags is short.Three fine slags all produce glassy slags,which is conducive to slag discharge.The degree of polymerization of silicate melt is proportionate to the amount of SiO_(2)in the slag.A part of Al^(3+)exist in the form of[AlO_(4)]^(5-)because of the effect of CaO and Na_(2)O,as the network former.Finally,the degree of polymerization of the three type molten slag was calculated by considering the role of Si and Al in molten slag and the property of each one.
基金Project supported by the graduate training funds of Shanghai Ocean University in China。
文摘The circadian system of mammals is composed of a hierarchical network of oscillators,including a core clock and peripheral clocks.The core clock receives an external photic signal and transmits it to the peripheral clocks,which,in turn,feed back to the core clock.Aging affects various functions of organisms including the circadian system.Entrainment displays the adaptability of the circadian system to changes in the external environment.However,there is currently no systematic study on the effects of aging on the entrainment capability.To explore the influencing mechanism,we develop a mathematical model of two populations of Goodwin oscillators,which represent the core clock and peripheral clocks.Based on numerical simulations,we conduct a detailed study on the impact of three aging-related factors on the entrainment capability represented by the entrainment range,entrainment time,and entrainment phase.The results indicate that the decrease in the sensitivity of suprachiasmatic nucleus(SCN)to light and the coupling strength from the SCN to the peripheral clocks due to aging increase the phase difference between the core and peripheral clocks,narrow the entrainment range,and prolong the entrainment time.A reduction in the coupling strength within the SCN has little effect on the three aspects mentioned above but increases the entrainment phase.Overall,aging reduces the circadian system's adaptability to the external environment,and the increased entrainment phase may lead to corresponding sleep problems.We also show that modulating the internal coupling strength in the peripheral clocks can mitigate aging effects;this provides an idea for using peripheral clocks to adjust the core clock,while also revealing new insights into the interaction between aging and the elasticity of the circadian system.This mechanism provides theoretical support for treating or alleviating circadian system disorders or sleep problems caused by aging.
基金funding from the European Union’s Horizon 2020 Marie Sklodowska-Curie Actions (MSCA), Innovative Training Networks (ITN), H2020-MSCA-ITN-2020 grant agreement(No.955805)。
文摘In froth flotation,overall recovery of the floatable particles consists of true recovery and recovery by entrainment,where entrainment refers to the non-selective recovery of particles in the concentrate.To understand and optimize the flotation process with regard to process conditions,it is essential to distinguish true flotation recovery from overall recovery.The established methods rely on tailored flotation experiments,unrealistic flotation conditions,or using external tracers which can be different in density and crystal structure to the mineral(s) of interest.This study presents an approach to utilize naturally occuring suitable tracers to estimate the entrainment component from overall recovery of individual particles by establishing a relationship between their settling velocity coefficient and recovery probability.Recovery probabilities of individual particles are computed using particle-based separation modelling.The approach is demonstrated for a copper ore,where naturally occurring rutile was used as the tracer to determine the entrained component of the overall recovery of chalcopyrite particles.Laboratory flotation experiments revealed that entrainment accounted for up to 6% of the overall recovery probability of fully liberated chalcopyrite particles in the fine size fractions.This approach provides a practical method for entrainment correction enabling a more accurate evaluation of true flotation recovery.
文摘Background: Brainwave entrainment using binaural beats has shown potential in treating tinnitus, but most studies have focused on one-month treatment durations. Objective: This study aimed to evaluate the time-bound efficacy of brainwave entrainment using binaural beats, comparing it to a standard tinnitus masker over a three-month duration. Method: Sixty-three individuals having tinnitus with normal hearing sensitivity were enrolled in the study. The participants were categorized into groups Ⅰ, Ⅱ, and Ⅲ. They were provided with delta(4 Hz) and alpha(10 Hz) frequency binaural beats and standard tinnitus masker, respectively, for a duration of three months. The tinnitus handicap inventory(THI) scores, Visual analogue scale(VAS) rating for tinnitus distress, and quality of life parameters were measured. The reductions obtained for each measure during the end of the first, second and third month were measured and compared across the groups. Results: All three groups showed considerable reductions in THI and VAS scores and improvements in the quality of life domains, focusing on physical and psychological health. However, groups Ⅰ and Ⅱ, who received binaural beats stimuli, showed higher benefits than those who received standard tinnitus masker. Conclusion: The results of the current study indicated that binaural beats can be an effective treatment technique for individuals with tinnitus having normal hearing sensitivity. Clinicians and otology/audiology practitioners shall adopt this innovative treatment after further validating these findings.
基金supported by the National Natural Science Foundation of China(52479068)Open Fund Research from the State Key Laboratory of Hydraulics and Mountain River Engineering(SKHL2323).
文摘This study investigates the air–water interaction dynamics in jet streams,with particular emphasis on the transition from the cavity to the far-field regions.A dual-tip conductivity phase-detection probe was employed to analyze four distinct downstream water levels.Based on the development of the cross-sectional mean air concentration,the jet flow was divided into four distinct regions:the jet length region,impact region,splash region,and far-field region.The results demonstrate varying trends in the evolution of the mean air concentration and maximum bubble frequency.Downstream water levels exerted a significant influence on these parameters in the splash and far-field regions,whereas minimal variation was observed in the impact region.Additionally,notable differences were identified in the probability density function of water droplets between the cavity and downstream regions.Furthermore,downstream water depth was found to have a negligible effect on the proportion of small-sized droplets in both the impact and splash regions.
基金Project supported by the National Natural Science Foundation of China(Grant No.92252102).
文摘Tip vortex cavitation(TVC)is a critical phenomenon in propeller and turbine machinery.While much of the existing research on TVC has focused on its inception,the mechanisms driving its continuous growth remain under-explored.In this study,we propose a comprehensive theoretical model that integrates both gas diffusion and free nuclei entrainment to better understand the slow growth of tip vortex cavity.The efficacy of this model is validated by comparing its predicted temporal evolution of cavity size with experimental data,under both nuclei-depleted and large nuclei-injection conditions.Additionally,the model is used to further examine the individual effects of nuclei content and size on tip vortex cavity growth.Results reveal that,in sub-saturated nuclei flow,two critical equilibrium values for cavity size are identified:one determined by the balance of dissolved gases inside the cavity and the surrounding fluid,and the other by the balance between dissolved gases inside the cavity and the surrounding gas nuclei.The cavity stability size gradually shifts from the first to the second critical value as the gas nuclei content increases.However,since the model does not consider the destabilization mechanism of the cavity,the cavity may destabilize before reaching the second critical value.Meanwhile,the cavity growth rate increases significantly with increasing gas nuclei size.This work not only provides a comprehensive explanation for the experimental observations,but also provides new insights into the hysteresis phenomenon observed in TVC.
文摘This paper presents entrainment mechanism, and transported and diffusioncharacteristics at the point of entry of submerged jet. The profiles of both velocity andconcentration within the air-water mixing layer were theoretically deduced. And the comparisonsbetween theoretical values and measured data were made. Results show that the velocity profilewithin the air-water mixing layer exhibits a form of error function. The concentrations of airentrainment in the internal and external regions of air-water mixing layer correspond to Gaussiandistribution.
基金supported by the National Natural Science Foundation of China(Grant Nos.42175099,42027804,42075073)the Innovative Project of Postgraduates in Jiangsu Province in 2023(Grant No.KYCX23_1319)+3 种基金supported by the National Natural Science Foundation of China(Grant No.42205080)the Natural Science Foundation of Sichuan(Grant No.2023YFS0442)the Research Fund of Civil Aviation Flight University of China(Grant No.J2022-037)supported by the National Key Scientific and Technological Infrastructure project“Earth System Science Numerical Simulator Facility”(Earth Lab)。
文摘The process of entrainment-mixing between cumulus clouds and the ambient air is important for the development of cumulus clouds.Accurately obtaining the entrainment rate(λ)is particularly important for its parameterization within the overall cumulus parameterization scheme.In this study,an improved bulk-plume method is proposed by solving the equations of two conserved variables simultaneously to calculateλof cumulus clouds in a large-eddy simulation.The results demonstrate that the improved bulk-plume method is more reliable than the traditional bulk-plume method,becauseλ,as calculated from the improved method,falls within the range ofλvalues obtained from the traditional method using different conserved variables.The probability density functions ofλfor all data,different times,and different heights can be well-fitted by a log-normal distribution,which supports the assumed stochastic entrainment process in previous studies.Further analysis demonstrate that the relationship betweenλand the vertical velocity is better than other thermodynamic/dynamical properties;thus,the vertical velocity is recommended as the primary influencing factor for the parameterization ofλin the future.The results of this study enhance the theoretical understanding ofλand its influencing factors and shed new light on the development ofλparameterization.
文摘This work provides an overview of distillation processes,including process design for different distillation processes,selection of entrainers for special distillation processes,system integration and intensification of distillation processes,optimization of process parameters for distillation processes and recent research progress in dynamic control strategies.Firstly,the feasibility of using thermodynamic topological theories such as residual curve,phase equilibrium line and distillation boundary line to analyze different separation regions is discussed,and the rationality of distillation process design is discussed by using its feasibility.Secondly,the application of molecular simulation methods such as molecular dynamics simulation and quantum chemical calculation in the screening of entrainer is discussed for the extractive distillation process.The thermal coupling mechanism of different distillation processes is used to explore the process of different process intensifications.Next,a mixed integer nonlinear optimization strategy for the distillation process based on different algorithms is introduced.Finally,the improvement of dynamic control strategies for different distillation processes in recent years is summarized.This work focuses on the application of process intensification and system optimization in the design of distillation process,and analyzes the challenges,prospects,and development trends of distillation technology in the separation of multicomponent azeotropes.
基金The financial assistance of the Minerals Research Institute of Western AustraliaLynas Rare Earth LtdCurtin University (Grant number:M0537)。
文摘Water quality has been found to significantly influence the flotation operations due to the alteration of surface properties of minerals.The effect of cations on the flotation of RE minerals has been studied,however,there are still very limited information regarding the effect of anions.The present study examined the impact of specific anions such as Cl^(-),SO_(4)^(2-),and HCO_(3)^(-)on the flotation performance of rare earth(RE) ore.This study integrates flotation experiments,rheology measurements,entrainment experiments,zeta potential measurements and settling experiments.It is observed that an increase in the concentration of these anions lead to a decrease in the recovery of RE minerals and an increase in the recovery of FeO minerals and thus negatively affecting flotation efficiency.This adverse effect is most pronounced with Cl^(-)and least noticeable with HCO_(3)^(-).An increase in the non-selective entrainment of gangue minerals is observed when the flotation pulp has higher viscosity.The reduction in the zeta potential of fine particles in the presence of these results in a higher pulp viscosity due to increased attractive forces between particles.These findings were verified by settling experiments and calculations based on the DLVO theory.
基金the National Key R&D Program of China(Grant No.2021YFC3000802)the National Natural Science Foundation of China(Grant No.42175165)the National Key Scientific and Technological Infrastructure project“Earth System Numerical Simulation Facility”(EarthLab).
文摘Shallow convection plays an important role in transporting heat and moisture from the near-surface to higher altitudes,yet its parameterization in numerical models remains a great challenge,partly due to the lack of high-resolution observations.This study describes a large eddy simulation(LES)dataset for four shallow convection cases that differ primarily in inversion strength,which can be used as a surrogate for real data.To reduce the uncertainty in LES modeling,three different large eddy models were used,including SAM(System for Atmospheric Modeling),WRF(Weather Research and Forecasting model),and UCLA-LES.Results show that the different models generally exhibit similar behavior for each shallow convection case,despite some differences in the details of the convective structure.In addition to grid-averaged fields,conditionally sampled variables,such as in-cloud moisture and vertical velocity,are also provided,which are indispensable for calculation of the entrainment/detrainment rate.Considering the essentiality of the entraining/detraining process in the parameterization of cumulus convection,the dataset presented in this study is potentially useful for validation and improvement of the parameterization of shallow convection.
基金The fund from Ministry of Science and Technology of the People’s Republic of China under contract No.2023YFF0805204the Natural Science Foundation of Yunnan Province under contract No.202302AN360006the National Natural Science Foundation of China under contract No.41776019.
文摘The element iron limitation is one of the crucial factors contributing to high nutrient low chlorophyll in the Southern Ocean(SO).Mixed layer dynamics regulate the availability of iron to phytoplankton.In this paper,we investigate the influence of surface iron supplementation triggered by the mixed layer depth(MLD)variation on chlorophyll-a(Chl-a)concentration in the SO on seasonal and interannual timescales.This analysis is based on the Biogeochemical Southern Ocean State Estimate for the period from 2013 to 2021.We provide a comprehensive and systematic mapping of the regions within the SO,where Chl-a is affected by iron input related to MLD deepening.The relationship between the MLD and the Chl-a varies with the latitude on the seasonal time scale.Both the MLD and sea ice melting affect the distribution of Chl-a.On the interannual scale,iron supply due to MLD deepening occurs primarily north of 60°S.Horizontal advection-induced entrainment enhances the surface iron input during the austral summer,which favors Chl-a increase.In addition to the MLD,the melting of sea ice and cooling of the sea surface can also alter iron input and subsequently affect Chl-a distribution in the austral summer.During the austral winter,entrainment can boost iron stocks,stimulating a subsequent spring increase of Chl-a in the SO.Furthermore,sea surface temperature declines during the austral winter,promoting an increased iron supply and creating favorable conditions for the subsequent spring Chl-a increase in the SO.
基金This study was supported by the National Natural Science Foundation of China(No.21878335,21576293,and 21576294)the Major Scientific and Technological Innovation Projects in Shandong Province of China(No.2018CXGC0301)+1 种基金the Fundamental Research Funds for the Central Universities(18CX02121A)The authors gratefully acknowledge the financial support from the State Key Laboratory of Heavy Oil Processing and the Shandong Natural Science Foundation(ZR2017QEE006).
文摘To study the hydrodynamic characteristics of gas-solid-phase flow in a pulse riser,a dense discrete particle model considering particle collisions and solid volume fraction is used.The core-annular flow in the enlarged-diameter section of the pulse riser is described,which can be destroyed with a high superficial gas velocity.The particle trajectory crossing effect and particle-particle and particle-wall collisions in the reduced-diameter section of the pulse riser can also destroy the core-annular flow and enhance the gas-solid interaction.The solid volume fraction exhibits an S-type distribution at different solid mass rates.The distribution of axial velocity,radial velocity,and relative slip velocity is investigated by analyzing the simulated results at different pulse riser diameter ratios.A suitable pulse riser diameter ratio can improve the performance of the pulse riser.