Pairs of entangled vortex photons can promise new prospects of application in quantum computing and cryptography.We investigate the possibility of generating such states via two-level atom emission induced by a single...Pairs of entangled vortex photons can promise new prospects of application in quantum computing and cryptography.We investigate the possibility of generating such states via two-level atom emission induced by a single photon wave packet with a definite total angular momentum(TAM).The entangled pair produced in this process possesses well-defined mean TAM with the TAM variation being much smaller than h.On top of that,the variation exponentially decreases with the increase in TAM of the incident photon.Our model allows one to track the time evolution of the state of the entangled pair.An experimentally feasible scenario is assumed,in which the incident photon interacts with a spatially confined atomic target.We conclude that induced emission can be used as a source of entangled vortex photons with applications in atomic physics experiments,quantum optics,and quantum information sciences.展开更多
Due to their high mechanical compliance and excellent biocompatibility,conductive hydrogels exhibit significant potential for applications in flexible electronics.However,as the demand for high sensitivity,superior me...Due to their high mechanical compliance and excellent biocompatibility,conductive hydrogels exhibit significant potential for applications in flexible electronics.However,as the demand for high sensitivity,superior mechanical properties,and strong adhesion performance continues to grow,many conventional fabrication methods remain complex and costly.Herein,we propose a simple and efficient strategy to construct an entangled network hydrogel through a liquid-metal-induced cross-linking reaction,hydrogel demonstrates outstanding properties,including exceptional stretchability(1643%),high tensile strength(366.54 kPa),toughness(350.2 kJ m^(−3)),and relatively low mechanical hysteresis.The hydrogel exhibits long-term stable reusable adhesion(104 kPa),enabling conformal and stable adhesion to human skin.This capability allows it to effectively capture high-quality epidermal electrophysiological signals with high signal-to-noise ratio(25.2 dB)and low impedance(310 ohms).Furthermore,by integrating advanced machine learning algorithms,achieving an attention classification accuracy of 91.38%,which will significantly impact fields like education,healthcare,and artificial intelligence.展开更多
We present a quantum ranging protocol that overcomes photon-loss limitations using optimized partially frequencyentangled states.By establishing the fundamental relationship between the degree of entanglement,channel ...We present a quantum ranging protocol that overcomes photon-loss limitations using optimized partially frequencyentangled states.By establishing the fundamental relationship between the degree of entanglement,channel transmission efficiency and measurement precision,we demonstrate superclassical timing resolution in both lossless and lossy regimes.Theoretical analysis and numerical simulations reveal that,under a lossless channel,the precision gain increases with the degree of entanglement,approaching the Heisenberg limit.Importantly,in lossy channels,the precision gain is significantly influenced by both the channel transmission efficiency and the degree of entanglement.For transmission efficiencies above50%,the proposed method provides up to 1.5 times the precision gain of classical methods when entanglement parameters are optimized.Moreover,by optimizing intra-group and inter-group covariances in the multi-structured entangled state,we achieve substantial precision gains even at low transmission efficiencies(~30%),demonstrating its robustness against loss.This study resolves the critical trade-off between entanglement-enhanced precision and loss-induced information degradation.Future implementation could extend to satellite-based quantum positioning,remote sensing,quantum illumination,and other fields that require high-precision ranging in lossy environments.The protocol establishes a universal framework for loss-tolerant quantum metrology,advancing the practical deployment of quantum-enhanced sensing in real-world applications.展开更多
We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). ...We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). We identify the optimal phase sensitivity of this scheme by maximizing the quantum Fisher information(QFI) with respect to the BS transmission ratio. Our scheme outperforms the conventional scheme with a balanced BS, particularly in the presence of single-mode photon loss. Notably, our scheme retains quantum advantage in phase sensitivity in the limit of high photon intensity, where the balanced scheme offers no advantage over the classical strategy.展开更多
The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes ...The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes used there are incapable of cloning quantum entangled states in multipartite systems.Few schemes were proposed for cloning multiparticle states,which consume more entanglement resources with loss of qubits,and the fidelity of the cloned state is relatively low.In this paper,cloning schemes for bipartite and tripartite entangled states based on photonic quantum walk and entanglement swapping are proposed.The results show that according to the proposed schemes,two high-fidelity(up to 0.75)cloned states can be obtained with less quantum resource consumption.Because of the simple cloning steps,few quantum resources and high fidelity,these schemes are both efficient and feasible.Moreover,this cloning machine eliminates the need for tracing out cloning machine,thereby minimizing resource waste.展开更多
Hybrid entangled states are crucial in quantum physics,offering significant benefits for hybrid quantum communication and quantum computation,and then the conversion of hybrid entangled states is equally critical.This...Hybrid entangled states are crucial in quantum physics,offering significant benefits for hybrid quantum communication and quantum computation,and then the conversion of hybrid entangled states is equally critical.This paper presents two novel schemes,that is,one converts the two-qubit hybrid Knill–Laflamme–Milburn(KLM)entangled state into Bell states and the other one transforms the three-qubit hybrid KLM state into Greenberger–Horne–Zeilinger(GHZ)states assisted by error-predicted and parity-discriminated devices.Importantly,the integration of single photon detectors into the parity-discriminated device enhances predictive capabilities,mitigates potential failures,and facilitates seamless interaction between the nitrogen-vacancy center and photons,so the two protocols operate in an error-predicted way,improving the experimental feasibility.Additionally,our schemes demonstrate robust fidelities(close to 1)and efficiencies,indicating their feasibility with existing technology.展开更多
Hybrid entangled states(HESs),which involve different particles with various degrees of freedom,have garnered significant attention and been applied in a wide range of quantum technologies.However,similar to other cat...Hybrid entangled states(HESs),which involve different particles with various degrees of freedom,have garnered significant attention and been applied in a wide range of quantum technologies.However,similar to other categories of entanglement,maximally HESs inevitably degrade to mixed states due to the environmental noise and operational imperfections.To address the degradation problem,measurement-based entanglement purification offers a feasible and robust solution alternative to conventional gate-based purification methods.In this paper,we propose a measurement-based hybrid entanglement purification protocol(MB-HEPP)for a certain kind of HES which consists of polarization photons and coherent states.We extend our methodology to several conditions,such as the multi-copy and multi-party scenarios,and the photon-loss condition.Compared with previous HEPPs,this protocol has several advantages.First,it does not depend on post-selection and the purified HESs can be retained for further application.Second,it does not require the Bell state measurement,but only uses the parity check with conventional linear optical elements,which makes it have the higher success probability and more feasible.Our MB-HEPP has potential applications in future heterogeneous quantum networks.展开更多
A new bipartite coherent-entangled state is introduced in the two-mode Fock space, which exhibits the properties of both a coherent state and an entangled state. The set of coherent-entangled states makes up a complet...A new bipartite coherent-entangled state is introduced in the two-mode Fock space, which exhibits the properties of both a coherent state and an entangled state. The set of coherent-entangled states makes up a complete and partly nonorthogonal representation. A simple experimental scheme to produce the coherent-entangled state using an asymmetric beamsplitter is proposed. Some applications of the coherent-entangled state in quantum optics are also oresented.展开更多
We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transfo...We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.展开更多
With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes ...With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.展开更多
We construct a new bipartite entangled state(NBES),which describes both the squeezing and the entanglement involved in the parametric down-conversion process and can be produced using a symmetric beam splitter.Const...We construct a new bipartite entangled state(NBES),which describes both the squeezing and the entanglement involved in the parametric down-conversion process and can be produced using a symmetric beam splitter.Constructing asymmetric ket-bra integrations based on the NBES leads to some new squeezing operators,which clearly exhibit the relationships between squeezing and entangled state transformations.Moreover,an entangled Wigner operator with a definite physical meaning is also presented.展开更多
Based on the quantum information theory, this paper has investigated the entanglement properties of a system which is composed of the two entangled two-level atoms interacting with the two-mode entangled coherent fiel...Based on the quantum information theory, this paper has investigated the entanglement properties of a system which is composed of the two entangled two-level atoms interacting with the two-mode entangled coherent fields. The influences of the strength of light field and the two parameters of entanglement between the two-mode fields on the field entropy and on the negative eigenvalues of partial transposition of density matrix are discussed by using numerical calculations. The result shows that the entanglement properties in a system of a pairwise entangled states can be controlled by appropriately choosing the two parameters of entanglement between the two-mode entangled coherent fields and the strength of two light fields respectively.展开更多
A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W st...A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.展开更多
We consider how to teleport two- and three-mode Einstein-Podolsky Rosen entangled states (|η) and |Pt, X2, X3)) via a |Pt, X2, X3) quantum channel for continuous variables. Using the complete and orthogonal r...We consider how to teleport two- and three-mode Einstein-Podolsky Rosen entangled states (|η) and |Pt, X2, X3)) via a |Pt, X2, X3) quantum channel for continuous variables. Using the complete and orthogonal representation of the entangled states, we can not only find the a complete basis set for the joint measurement but also propose the specific scheme of teleportation. Our calculation can be greatly simplified by using their Schmidt decompositions.展开更多
We construct the n-particle entangled states |β>θ in n-mode Fock space, and examine their completeness relation and partly non-orthonormal property. Their Schmidt decomposition and entangled operator are manifest...We construct the n-particle entangled states |β>θ in n-mode Fock space, and examine their completeness relation and partly non-orthonormal property. Their Schmidt decomposition and entangled operator are manifestly shown. Finally, we discuss their application.展开更多
We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variable...We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variables in n-mode Fock space. We establish a formalism of EFFT for quantum mechanical wave functions, which provides us a convenient way to derive some wave functions. We find that the eigenmode of EFFT is different from the usual Hermite Polynomials. We also derive the EFFT of the n-mode squeezed state.展开更多
Based on the fact that the quantum mechanical version of Hankel transform kernel(the Bessel function) is just the transform between |q, r〉 and(s, r′|, two induced entangled state representations are given, and ...Based on the fact that the quantum mechanical version of Hankel transform kernel(the Bessel function) is just the transform between |q, r〉 and(s, r′|, two induced entangled state representations are given, and working with them we derive fractional squeezing-Hankel transform(FrSHT) caused by the operator e(-iα)(a1-a-2-+a-1a-2)e-(-iπa2-a2), which is an entangled fractional squeezing transform operator. The additive rule of the FrSHT can be explicitly proved.展开更多
This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and de...This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.展开更多
Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks ...Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.展开更多
In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second sche...In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.展开更多
基金The derivation of the population coefficients in the emission induced by a plane wave are supported by the Foundation for the Advancement of Theoretical Physics and Mathematics“BASIS”The extension of these calculations to an incident vortex photon is supported by the Ministry of Science and Higher Education of the Russian Federation(Grant No.FSER-2025-0012)+2 种基金The studies of time dynamics of OAM of the entangled pair are supported by the Russian Science Foundation(Grant No.23-62-10026https://rscf.ru/en/project/23-6210026/)The studies of influence of the finite localization region of an atom on its interaction with an incident vortex photons are supported by the Russian Science Foundation(Grant No.25-71-00060)。
文摘Pairs of entangled vortex photons can promise new prospects of application in quantum computing and cryptography.We investigate the possibility of generating such states via two-level atom emission induced by a single photon wave packet with a definite total angular momentum(TAM).The entangled pair produced in this process possesses well-defined mean TAM with the TAM variation being much smaller than h.On top of that,the variation exponentially decreases with the increase in TAM of the incident photon.Our model allows one to track the time evolution of the state of the entangled pair.An experimentally feasible scenario is assumed,in which the incident photon interacts with a spatially confined atomic target.We conclude that induced emission can be used as a source of entangled vortex photons with applications in atomic physics experiments,quantum optics,and quantum information sciences.
基金supported by the National Key Research&Development Program of China(grant no.2022YFC3500503)the National Natural Science Foundation of China(grant nos.62227807,12374171,12004034,62402041)+2 种基金the Beijing Institute of Technology Research Fund Program for Young Scholars,Chinathe Fundamental Research Funds for the Central Universities(grant nos.2024CX06060)Beijing Youth Talent Lifting Project.
文摘Due to their high mechanical compliance and excellent biocompatibility,conductive hydrogels exhibit significant potential for applications in flexible electronics.However,as the demand for high sensitivity,superior mechanical properties,and strong adhesion performance continues to grow,many conventional fabrication methods remain complex and costly.Herein,we propose a simple and efficient strategy to construct an entangled network hydrogel through a liquid-metal-induced cross-linking reaction,hydrogel demonstrates outstanding properties,including exceptional stretchability(1643%),high tensile strength(366.54 kPa),toughness(350.2 kJ m^(−3)),and relatively low mechanical hysteresis.The hydrogel exhibits long-term stable reusable adhesion(104 kPa),enabling conformal and stable adhesion to human skin.This capability allows it to effectively capture high-quality epidermal electrophysiological signals with high signal-to-noise ratio(25.2 dB)and low impedance(310 ohms).Furthermore,by integrating advanced machine learning algorithms,achieving an attention classification accuracy of 91.38%,which will significantly impact fields like education,healthcare,and artificial intelligence.
基金Project supported by the National Natural Science Foundation of China(Grant No.62071363)the Key Research and Development Projects of Shaanxi Province,China(Grant No.2021LLRH-06)。
文摘We present a quantum ranging protocol that overcomes photon-loss limitations using optimized partially frequencyentangled states.By establishing the fundamental relationship between the degree of entanglement,channel transmission efficiency and measurement precision,we demonstrate superclassical timing resolution in both lossless and lossy regimes.Theoretical analysis and numerical simulations reveal that,under a lossless channel,the precision gain increases with the degree of entanglement,approaching the Heisenberg limit.Importantly,in lossy channels,the precision gain is significantly influenced by both the channel transmission efficiency and the degree of entanglement.For transmission efficiencies above50%,the proposed method provides up to 1.5 times the precision gain of classical methods when entanglement parameters are optimized.Moreover,by optimizing intra-group and inter-group covariances in the multi-structured entangled state,we achieve substantial precision gains even at low transmission efficiencies(~30%),demonstrating its robustness against loss.This study resolves the critical trade-off between entanglement-enhanced precision and loss-induced information degradation.Future implementation could extend to satellite-based quantum positioning,remote sensing,quantum illumination,and other fields that require high-precision ranging in lossy environments.The protocol establishes a universal framework for loss-tolerant quantum metrology,advancing the practical deployment of quantum-enhanced sensing in real-world applications.
基金supported by the National Natural Science Foundation of China (Grant No. 12005106)support from the National Natural Science Foundation of China (Grant No. 11974189)+1 种基金support from the National Natural Science Foundation of China (Grant No. 12175106)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. JSCX23-0260)。
文摘We propose a quantum-enhanced metrological scheme utilizing unbalanced entangled coherent states(ECSs) generated by passing a coherent state and a coherent state superposition through an unbalanced beam splitter(BS). We identify the optimal phase sensitivity of this scheme by maximizing the quantum Fisher information(QFI) with respect to the BS transmission ratio. Our scheme outperforms the conventional scheme with a balanced BS, particularly in the presence of single-mode photon loss. Notably, our scheme retains quantum advantage in phase sensitivity in the limit of high photon intensity, where the balanced scheme offers no advantage over the classical strategy.
文摘The no-cloning theorem has sparked considerable interest in achieving high-fidelity approximate quantum cloning.Most of the previous studies mainly focused on the cloning of single particle states,and cloning schemes used there are incapable of cloning quantum entangled states in multipartite systems.Few schemes were proposed for cloning multiparticle states,which consume more entanglement resources with loss of qubits,and the fidelity of the cloned state is relatively low.In this paper,cloning schemes for bipartite and tripartite entangled states based on photonic quantum walk and entanglement swapping are proposed.The results show that according to the proposed schemes,two high-fidelity(up to 0.75)cloned states can be obtained with less quantum resource consumption.Because of the simple cloning steps,few quantum resources and high fidelity,these schemes are both efficient and feasible.Moreover,this cloning machine eliminates the need for tracing out cloning machine,thereby minimizing resource waste.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3203400)the National Natural Science Foundation of China(Grant No.61901420)Fundamental Research Program of Shanxi Province(Grant No.20230302121116)。
文摘Hybrid entangled states are crucial in quantum physics,offering significant benefits for hybrid quantum communication and quantum computation,and then the conversion of hybrid entangled states is equally critical.This paper presents two novel schemes,that is,one converts the two-qubit hybrid Knill–Laflamme–Milburn(KLM)entangled state into Bell states and the other one transforms the three-qubit hybrid KLM state into Greenberger–Horne–Zeilinger(GHZ)states assisted by error-predicted and parity-discriminated devices.Importantly,the integration of single photon detectors into the parity-discriminated device enhances predictive capabilities,mitigates potential failures,and facilitates seamless interaction between the nitrogen-vacancy center and photons,so the two protocols operate in an error-predicted way,improving the experimental feasibility.Additionally,our schemes demonstrate robust fidelities(close to 1)and efficiencies,indicating their feasibility with existing technology.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175106 and 92365110)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(Grant No.KYCX23-1028)。
文摘Hybrid entangled states(HESs),which involve different particles with various degrees of freedom,have garnered significant attention and been applied in a wide range of quantum technologies.However,similar to other categories of entanglement,maximally HESs inevitably degrade to mixed states due to the environmental noise and operational imperfections.To address the degradation problem,measurement-based entanglement purification offers a feasible and robust solution alternative to conventional gate-based purification methods.In this paper,we propose a measurement-based hybrid entanglement purification protocol(MB-HEPP)for a certain kind of HES which consists of polarization photons and coherent states.We extend our methodology to several conditions,such as the multi-copy and multi-party scenarios,and the photon-loss condition.Compared with previous HEPPs,this protocol has several advantages.First,it does not depend on post-selection and the purified HESs can be retained for further application.Second,it does not require the Bell state measurement,but only uses the parity check with conventional linear optical elements,which makes it have the higher success probability and more feasible.Our MB-HEPP has potential applications in future heterogeneous quantum networks.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11147009)the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AQ027)the Shandong Provincial Higher Educational Science and Technology Program, China (Grant No. J09LA07)
文摘A new bipartite coherent-entangled state is introduced in the two-mode Fock space, which exhibits the properties of both a coherent state and an entangled state. The set of coherent-entangled states makes up a complete and partly nonorthogonal representation. A simple experimental scheme to produce the coherent-entangled state using an asymmetric beamsplitter is proposed. Some applications of the coherent-entangled state in quantum optics are also oresented.
基金Project supported by the Specialized Research Fund for Doctoral Program of High Education of Chinathe National Natural Science Foundation of China (Grant Nos. 10874174 and 10947017/A05)
文摘We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.
基金Prospective Research Project on Future Networks of Jiangsu Province,China(No.BY2013095-1-18)
文摘With ensured network connectivity in quantum channels, the issue of distributing entangled particles in wireless quantum communication mesh networks can be equivalently regarded as a problem of quantum backbone nodes selection in order to save cost and reduce complexity. A minimum spanning tree( MST)-based quantum distribution algorithm( QDMST) is presented to construct the mesh backbone network. First, the articulation points are found,and for each connected block uncovered by the articulation points, the general centers are solved. Then, both articulation points and general centers are classified as backbone nodes and an M ST is formed. The quantum path between every two neighbor nodes on the MST is calculated. The nodes on these paths are also classified as backbone nodes. Simulation results validate the advantages of QDMST in the average backbone nodes number and average quantum channel distance compared to the existing random selection algorithm under multiple network scenarios.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11147009)the Natural Science Foundation of Shandong Province,China (Grant Nos. ZR2010AQ027 and ZR2012AM004)the Shandong Provincial Higher Educational Science and Technology Program,China (Grant No. J10LA15)
文摘We construct a new bipartite entangled state(NBES),which describes both the squeezing and the entanglement involved in the parametric down-conversion process and can be produced using a symmetric beam splitter.Constructing asymmetric ket-bra integrations based on the NBES leads to some new squeezing operators,which clearly exhibit the relationships between squeezing and entangled state transformations.Moreover,an entangled Wigner operator with a definite physical meaning is also presented.
基金Project supported by the Higher Education of Hubei Province of China (Grant No Z200522001) and the Natural Science Foundation of Hubei Province of China (Grant No 2006ABA055).
文摘Based on the quantum information theory, this paper has investigated the entanglement properties of a system which is composed of the two entangled two-level atoms interacting with the two-mode entangled coherent fields. The influences of the strength of light field and the two parameters of entanglement between the two-mode fields on the field entropy and on the negative eigenvalues of partial transposition of density matrix are discussed by using numerical calculations. The result shows that the entanglement properties in a system of a pairwise entangled states can be controlled by appropriately choosing the two parameters of entanglement between the two-mode entangled coherent fields and the strength of two light fields respectively.
基金The project supported by National Natural Science Foundation of Chins under Grant No. 10574022 and the Natural Science Foundation of Fujian Province of China under Grant No. Z0512006
文摘A scheme for teleporting an unknown three-particle GHZ state from a sender to either one of two receivers is proposed. In this scheme, the quantum channel is composed of two non-maximally three-particle entangled W states. An unknown three-particle GHZ state can be perfectly teleported probabilistically if the sender performs two generalized Bell-state measurements and the Hadamard operation while either one of two receivers introduces an ancillary particle which is one of the final three particle constituting the teleported state, then performs the controlled-not operation with the ancillary particle as the target bit and introduces an appropriate unitary transformation with the help of the other receiver's simple measurements. All kinds of unitary transformations are given in detail. The present scheme may be directly generalized to teleport an unknown multiparticle GHZ state via two three-particle entangled W states used as the quantum channel.
基金Project supported by the National Natural Science Foundation of China (Grant No 10475056).
文摘We consider how to teleport two- and three-mode Einstein-Podolsky Rosen entangled states (|η) and |Pt, X2, X3)) via a |Pt, X2, X3) quantum channel for continuous variables. Using the complete and orthogonal representation of the entangled states, we can not only find the a complete basis set for the joint measurement but also propose the specific scheme of teleportation. Our calculation can be greatly simplified by using their Schmidt decompositions.
文摘We construct the n-particle entangled states |β>θ in n-mode Fock space, and examine their completeness relation and partly non-orthonormal property. Their Schmidt decomposition and entangled operator are manifestly shown. Finally, we discuss their application.
基金The project supported by 0pen Foundation of Laboratory of High-Intensity 0ptics, Shanghai Institute of 0ptics and Fine Mechanics
文摘We deduce entangled fractional Fourier transformation (EFFT) for the multipartite entangled state representation, which was newly constructed with two mutually conjugate n-mode entangled states of continuum variables in n-mode Fock space. We establish a formalism of EFFT for quantum mechanical wave functions, which provides us a convenient way to derive some wave functions. We find that the eigenmode of EFFT is different from the usual Hermite Polynomials. We also derive the EFFT of the n-mode squeezed state.
基金Project supported by the National Natural Science Foundation of China(Grant No.11304126)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130532)
文摘Based on the fact that the quantum mechanical version of Hankel transform kernel(the Bessel function) is just the transform between |q, r〉 and(s, r′|, two induced entangled state representations are given, and working with them we derive fractional squeezing-Hankel transform(FrSHT) caused by the operator e(-iα)(a1-a-2-+a-1a-2)e-(-iπa2-a2), which is an entangled fractional squeezing transform operator. The additive rule of the FrSHT can be explicitly proved.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604008 and 10435020) and the Beijing Education Committee (Grant No XK100270454).
文摘This paper presents a scheme for quantum secure direct communication with quantum encryption. The two authorized users use repeatedly a sequence of the pure entangled pairs (quantum key) shared for encrypting and decrypting the secret message carried by the travelling photons directly. For checking eavesdropping, the two parties perform the single-photon measurements on some decoy particles before each round. This scheme has the advantage that the pure entangled quantum signal source is feasible at present and any eavesdropper cannot steal the message.
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 60921063) and the National High Technology Research and Development Program of China (Grant No. 2013AA013601).
文摘Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible.
文摘In this paper, two schemes for teleporting an unknown four-particle entangled W state is proposed. In the first scheme, two partial entangled four-particle states are used as quantum channels, while in the second scheme,four non-maximally entangled particle pairs are considered as quantum channels. It is shown that the teleportation can be successfully realized with certain probability, for both schemes, if a receiver adopts some appropriate unitary transformations. It is also shown that the successful probabilities of these two schemes are different.