期刊文献+
共找到301篇文章
< 1 2 16 >
每页显示 20 50 100
Explainable artificial intelligence and ensemble learning for hepatocellular carcinoma classification:State of the art,performance,and clinical implications
1
作者 Sami Akbulut Cemil Colak 《World Journal of Hepatology》 2025年第11期11-25,共15页
Hepatocellular carcinoma(HCC)remains a leading cause of cancer-related mortality globally,necessitating advanced diagnostic tools to improve early detection and personalized targeted therapy.This review synthesizes ev... Hepatocellular carcinoma(HCC)remains a leading cause of cancer-related mortality globally,necessitating advanced diagnostic tools to improve early detection and personalized targeted therapy.This review synthesizes evidence on explainable ensemble learning approaches for HCC classification,emphasizing their integration with clinical workflows and multi-omics data.A systematic analysis[including datasets such as The Cancer Genome Atlas,Gene Expression Omnibus,and the Surveillance,Epidemiology,and End Results(SEER)datasets]revealed that explainable ensemble learning models achieve high diagnostic accuracy by combining clinical features,serum biomarkers such as alpha-fetoprotein,imaging features such as computed tomography and magnetic resonance imaging,and genomic data.For instance,SHapley Additive exPlanations(SHAP)-based random forests trained on NCBI GSE14520 microarray data(n=445)achieved 96.53%accuracy,while stacking ensembles applied to the SEER program data(n=1897)demonstrated an area under the receiver operating characteristic curve of 0.779 for mortality prediction.Despite promising results,challenges persist,including the computational costs of SHAP and local interpretable model-agnostic explanations analyses(e.g.,TreeSHAP requiring distributed computing for metabolomics datasets)and dataset biases(e.g.,SEER’s Western population dominance limiting generalizability).Future research must address inter-cohort heterogeneity,standardize explainability metrics,and prioritize lightweight surrogate models for resource-limited settings.This review presents the potential of explainable ensemble learning frameworks to bridge the gap between predictive accuracy and clinical interpretability,though rigorous validation in independent,multi-center cohorts is critical for real-world deployment. 展开更多
关键词 Hepatocellular carcinoma Artificial intelligence Explainable artificial intelligence ensemble learning Explainable ensemble learning
在线阅读 下载PDF
Multi-model ensemble learning for battery state-of-health estimation:Recent advances and perspectives 被引量:2
2
作者 Chuanping Lin Jun Xu +4 位作者 Delong Jiang Jiayang Hou Ying Liang Zhongyue Zou Xuesong Mei 《Journal of Energy Chemistry》 2025年第1期739-759,共21页
The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational per... The burgeoning market for lithium-ion batteries has stimulated a growing need for more reliable battery performance monitoring. Accurate state-of-health(SOH) estimation is critical for ensuring battery operational performance. Despite numerous data-driven methods reported in existing research for battery SOH estimation, these methods often exhibit inconsistent performance across different application scenarios. To address this issue and overcome the performance limitations of individual data-driven models,integrating multiple models for SOH estimation has received considerable attention. Ensemble learning(EL) typically leverages the strengths of multiple base models to achieve more robust and accurate outputs. However, the lack of a clear review of current research hinders the further development of ensemble methods in SOH estimation. Therefore, this paper comprehensively reviews multi-model ensemble learning methods for battery SOH estimation. First, existing ensemble methods are systematically categorized into 6 classes based on their combination strategies. Different realizations and underlying connections are meticulously analyzed for each category of EL methods, highlighting distinctions, innovations, and typical applications. Subsequently, these ensemble methods are comprehensively compared in terms of base models, combination strategies, and publication trends. Evaluations across 6 dimensions underscore the outstanding performance of stacking-based ensemble methods. Following this, these ensemble methods are further inspected from the perspectives of weighted ensemble and diversity, aiming to inspire potential approaches for enhancing ensemble performance. Moreover, addressing challenges such as base model selection, measuring model robustness and uncertainty, and interpretability of ensemble models in practical applications is emphasized. Finally, future research prospects are outlined, specifically noting that deep learning ensemble is poised to advance ensemble methods for battery SOH estimation. The convergence of advanced machine learning with ensemble learning is anticipated to yield valuable avenues for research. Accelerated research in ensemble learning holds promising prospects for achieving more accurate and reliable battery SOH estimation under real-world conditions. 展开更多
关键词 Lithium-ion battery State-of-health estimation DATA-DRIVEN Machine learning ensemble learning ensemble diversity
在线阅读 下载PDF
Diverse Models,United Goal:A Comprehensive Survey of Ensemble Learning
3
作者 Ziwei Fan Zhiwen Yu +5 位作者 Kaixiang Yang Wuxing Chen Xiaoqing Liu Guojie Li Xianling Yang C.L.Philip Chen 《CAAI Transactions on Intelligence Technology》 2025年第4期959-982,共24页
Ensemble learning,a pivotal branch of machine learning,amalgamates multiple base models to enhance the overarching performance of predictive models,capitalising on the diversity and collective wisdom of the ensemble t... Ensemble learning,a pivotal branch of machine learning,amalgamates multiple base models to enhance the overarching performance of predictive models,capitalising on the diversity and collective wisdom of the ensemble to surpass individual models and mitigate overfitting.In this review,a four-layer research framework is established for the research of ensemble learning,which can offer a comprehensive and structured review of ensemble learning from bottom to top.Firstly,this survey commences by introducing fundamental ensemble learning techniques,including bagging,boosting,and stacking,while also exploring the ensemble's diversity.Then,deep ensemble learning and semi-supervised ensemble learning are studied in detail.Furthermore,the utilisation of ensemble learning techniques to navigate challenging datasets,such as imbalanced and highdimensional data,is discussed.The application of ensemble learning techniques across various research domains,including healthcare,transportation,finance,manufacturing,and the Internet,is also examined.The survey concludes by discussing challenges intrinsic to ensemble learning. 展开更多
关键词 BAGGING BOOSTING deep learning ensemble learning imbalanced data semi-supervised learning STACKING
在线阅读 下载PDF
A Hybrid Feature Selection and Clustering-Based Ensemble Learning Approach for Real-Time Fraud Detection in Financial Transactions
4
作者 Naif Almusallam Junaid Qayyum 《Computers, Materials & Continua》 2025年第11期3653-3687,共35页
This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction m... This paper proposes a novel hybrid fraud detection framework that integrates multi-stage feature selection,unsupervised clustering,and ensemble learning to improve classification performance in financial transaction monitoring systems.The framework is structured into three core layers:(1)feature selection using Recursive Feature Elimination(RFE),Principal Component Analysis(PCA),and Mutual Information(MI)to reduce dimensionality and enhance input relevance;(2)anomaly detection through unsupervised clustering using K-Means,Density-Based Spatial Clustering(DBSCAN),and Hierarchical Clustering to flag suspicious patterns in unlabeled data;and(3)final classification using a voting-based hybrid ensemble of Support Vector Machine(SVM),Random Forest(RF),and Gradient Boosting Classifier(GBC).The experimental evaluation is conducted on a synthetically generated dataset comprising one million financial transactions,with 5% labelled as fraudulent,simulating realistic fraud rates and behavioural features,including transaction time,origin,amount,and geo-location.The proposed model demonstrated a significant improvement over baseline classifiers,achieving an accuracy of 99%,a precision of 99%,a recall of 97%,and an F1-score of 99%.Compared to individual models,it yielded a 9% gain in overall detection accuracy.It reduced the false positive rate to below 3.5%,thereby minimising the operational costs associated with manually reviewing false alerts.The model’s interpretability is enhanced by the integration of Shapley Additive Explanations(SHAP)values for feature importance,supporting transparency and regulatory auditability.These results affirm the practical relevance of the proposed system for deployment in real-time fraud detection scenarios such as credit card transactions,mobile banking,and cross-border payments.The study also highlights future directions,including the deployment of lightweight models and the integration of multimodal data for scalable fraud analytics. 展开更多
关键词 Fraud detection financial transactions economic impact feature selection CLUSTERING ensemble learning
在线阅读 下载PDF
ELM-APDPs:An Explainable Ensemble Learning Method for Accurate Prediction of Druggable Proteins
5
作者 Mujeebu Rehman Qinghua Liu +4 位作者 Ali Ghulam Tariq Ahmad Jawad Khan Dildar Hussain Yeong Hyeon Gu 《Computer Modeling in Engineering & Sciences》 2025年第10期779-805,共27页
Identifying druggable proteins,which are capable of binding therapeutic compounds,remains a critical and resource-intensive challenge in drug discovery.To address this,we propose CEL-IDP(Comparison of Ensemble Learnin... Identifying druggable proteins,which are capable of binding therapeutic compounds,remains a critical and resource-intensive challenge in drug discovery.To address this,we propose CEL-IDP(Comparison of Ensemble Learning Methods for Identification of Druggable Proteins),a computational framework combining three feature extraction methods Dipeptide Deviation from Expected Mean(DDE),Enhanced Amino Acid Composition(EAAC),and Enhanced Grouped Amino Acid Composition(EGAAC)with ensemble learning strategies(Bagging,Boosting,Stacking)to classify druggable proteins from sequence data.DDE captures dipeptide frequency deviations,EAAC encodes positional amino acid information,and EGAAC groups residues by physicochemical properties to generate discriminative feature vectors.These features were analyzed using ensemble models to overcome the limitations of single classifiers.EGAAC outperformed DDE and EAAC,with Random Forest(Bagging)and XGBoost(Boosting)achieving the highest accuracy of 71.66%,demonstrating superior performance in capturing critical biochemical patterns.Stacking showed intermediate results(68.33%),while EAAC and DDE-based models yielded lower accuracies(56.66%–66.87%).CEL-IDP streamlines large-scale druggability prediction,reduces reliance on costly experimental screening,and aligns with global initiatives like Target 2035 to expand action-able drug targets.This work advances machine learning-driven drug discovery by systematizing feature engineering and ensemble model optimization,providing a scalable workflow to accelerate target identification and validation. 展开更多
关键词 Druggable proteins ensemble learning computational drug discovery pharmacological target identification machine learning feature extraction
在线阅读 下载PDF
Ensemble learning-driven multi-objective optimization of the co-pyrolysis process of biomass and coal for high economic and environmental performance
6
作者 Qingchun Yang Dongwen Rong +2 位作者 Qiwen Guo Runjie Bao Dawei Zhang 《Chinese Journal of Chemical Engineering》 2025年第8期23-34,共12页
The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this ... The biomass and coal co-pyrolysis (BCP) technology combines the advantages of both resources, achieving efficient resource complementarity, reducing reliance on coal, and minimizing pollutant emissions. However, this process still encounters numerous challenges in attaining optimal economic and environmental performance. Therefore, an ensemble learning (EL) framework is proposed for the BCP process in this study to optimize the synergistic benefits while minimizing negative environmental impacts. Six different ensemble learning models are developed to investigate the impact of input features, such as biomass characteristics, coal characteristics, and pyrolysis conditions on the product profit and CO_(2) emissions of the BCP processes. The Optuna method is further employed to automatically optimize the hyperparameters of BCP process models for enhancing their predictive accuracy and robustness. The results indicate that the categorical boosting (CAB) model of the BCP process has demonstrated exceptional performance in accurately predicting its product profit and CO_(2) emission (R2>0.92) after undergoing five-fold cross-validation. To enhance the interpretability of this preferred model, the Shapley additive explanations and partial dependence plot analyses are conducted to evaluate the impact and importance of biomass characteristics, coal characteristics, and pyrolysis conditions on the product profitability and CO_(2) emissions of the BCP processes. Finally, the preferred model coupled with a reference vector guided evolutionary algorithm is carried to identify the optimal conditions for maximizing the product profit of BCP process products while minimizing CO_(2) emissions. It indicates the optimal BCP process can achieve high product profits (5290.85 CNY·t−1) and low CO_(2) emissions (7.45 kg·t^(−1)). 展开更多
关键词 BIOMASS PYROLYSIS Optimal design ensemble learning Economic analysis
在线阅读 下载PDF
PM_(2.5) concentration prediction system combining fuzzy information granulation and multi-model ensemble learning
7
作者 Yamei Chen Jianzhou Wang +1 位作者 Runze Li Jialu Gao 《Journal of Environmental Sciences》 2025年第10期332-345,共14页
With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration predict... With the rapid development of economy,air pollution caused by industrial expansion has caused serious harm to human health and social development.Therefore,establishing an effective air pollution concentration prediction system is of great scientific and practical significance for accurate and reliable predictions.This paper proposes a combination of pointinterval prediction system for pollutant concentration prediction by leveraging neural network,meta-heuristic optimization algorithm,and fuzzy theory.Fuzzy information granulation technology is used in data preprocessing to transform numerical sequences into fuzzy particles for comprehensive feature extraction.The golden Jackal optimization algorithm is employed in the optimization stage to fine-tune model hyperparameters.In the prediction stage,an ensemble learning method combines training results frommultiplemodels to obtain final point predictions while also utilizing quantile regression and kernel density estimation methods for interval predictions on the test set.Experimental results demonstrate that the combined model achieves a high goodness of fit coefficient of determination(R^(2))at 99.3% and a maximum difference between prediction accuracy mean absolute percentage error(MAPE)and benchmark model at 12.6%.This suggests that the integrated learning system proposed in this paper can provide more accurate deterministic predictions as well as reliable uncertainty analysis compared to traditionalmodels,offering practical reference for air quality early warning. 展开更多
关键词 Air pollution prediction Fuzzy information granulation Meta-heuristic optimization algorithm ensemble learning model Point interval prediction
原文传递
Graph-guided fault detection for multi-type lithium-ion batteries in realistic electric vehicles optimized by ensemble learning
8
作者 Caiping Zhang Shuowei Li +3 位作者 Jingcai Du Linjing Zhang Wei Luo Yan Jiang 《Journal of Energy Chemistry》 2025年第7期507-522,共16页
Accurately evaluating the safety status of lithium-ion battery systems in electric vehicles is imperative due to the challenges in effectively predicting potential battery failure risks under stochastic profiles.Compl... Accurately evaluating the safety status of lithium-ion battery systems in electric vehicles is imperative due to the challenges in effectively predicting potential battery failure risks under stochastic profiles.Complex battery fault mechanisms and limited poor-quality data collection impede fault detection for battery systems under real-world conditions.This paper proposes a novel graph-guided fault detection method designed to recognize concealed anomalies in realistic data.Graphs guided by physical relationships are constructed for learning the dynamic evolution of physical quantities under normal conditions and their potential change characteristics in fault scenarios.An ensemble Graph Sample and Aggregate Network model are developed to tackle sample distribution imbalances and non-uniformity battery system specifications across vehicles.Failure risk probabilities for diverse battery charging and discharging segments are derived.An ablation study verifies the necessity of ensemble learning in addressing imbalanced datasets.Analysis of 102,095 segments across 86 vehicles with different battery material systems,battery capacities,and numbers of cells and temperature sensors confirms the robustness and generalization of the proposed method,yielding a recall of 98.37%.By introducing the graph,spatio-temporal global fault characteristics of battery systems are automatically extracted.The coupling relationship and evolution of physical quantities under both normal and faulty states are established,effectively uncovering fault information hidden in collected battery data without observable anomalies.The safety state of battery systems is reflected in terms of failure risk probability,providing reliable data support for battery system maintenance. 展开更多
关键词 Lithium-ion battery Fault detection ensemble learning Deep learning Real-world operating
在线阅读 下载PDF
Enhancing Anomaly Detection in Cloud Computing Through Metaheuristics Feature Selection with Ensemble Learning Approach
9
作者 Jansi Sophia Mary C Mahalakshmi K 《China Communications》 2025年第8期168-182,共15页
Cloud computing(CC) provides infrastructure,storage services,and applications to the users that should be secured by some procedures or policies.Security in the cloud environment becomes essential to safeguard infrast... Cloud computing(CC) provides infrastructure,storage services,and applications to the users that should be secured by some procedures or policies.Security in the cloud environment becomes essential to safeguard infrastructure and user information from unauthorized access by implementing timely intrusion detection systems(IDS).Ensemble learning harnesses the collective power of multiple machine learning(ML) methods with feature selection(FS)process aids to progress the sturdiness and overall precision of intrusion detection.Therefore,this article presents a meta-heuristic feature selection by ensemble learning-based anomaly detection(MFS-ELAD)algorithm for the CC platforms.To realize this objective,the proposed approach utilizes a min-max standardization technique.Then,higher dimensionality features are decreased by Prairie Dogs Optimizer(PDO) algorithm.For the recognition procedure,the MFS-ELAD method emulates a group of 3 DL techniques such as sparse auto-encoder(SAE),stacked long short-term memory(SLSTM),and Elman neural network(ENN) algorithms.Eventually,the parameter fine-tuning of the DL algorithms occurs utilizing the sand cat swarm optimizer(SCSO) approach that helps in improving the recognition outcomes.The simulation examination of MFS-ELAD system on the CSE-CIC-IDS2018 dataset exhibits its promising performance across another method using a maximal precision of 99.71%. 展开更多
关键词 anomaly detection cloud computing ensemble learning intrusion detection system prairie dogs optimization
在线阅读 下载PDF
Predicting financial distress in high‑dimensional imbalanced datasets: a multi‑heterogeneous self‑paced ensemble learning framework
10
作者 Ruize Gao Shaoze Cui +1 位作者 Yu Wang Wei Xu 《Financial Innovation》 2025年第1期1656-1689,共34页
Financial distress prediction(FDP)is a critical area of study for researchers,industry stakeholders,and regulatory authorities.However,FDP tasks present several challenges,including high-dimensional datasets,class imb... Financial distress prediction(FDP)is a critical area of study for researchers,industry stakeholders,and regulatory authorities.However,FDP tasks present several challenges,including high-dimensional datasets,class imbalances,and the complexity of parameter optimization.These issues often hinder the predictive model’s ability to accurately identify companies at high risk of financial distress.To mitigate these challenges,we introduce FinMHSPE—a novel multi-heterogeneous self-paced ensemble(MHSPE)FDP learning framework.The proposed model uses pairwise comparisons of data from multiple time frames combined with the maximum relevance and minimum redundancy method to select an optimal subset of features,effectively resolving the high dimensionality issue.Furthermore,the proposed framework incorporates the MHSPE model to iteratively identify the most informative majority class data samples,effectively addressing the class imbalance issue.To optimize the model’s parameters,we leverage the particle swarm optimization algorithm.The robustness of our proposed model is validated through extensive experiments performed on a financial dataset of Chinese listed companies.The empirical results demonstrate that the proposed model outperforms existing competing models in the field of FDP.Specifically,our FinMHSPE framework achieves the highest performance,achieving an area under the curve(AUC)value of 0.9574,considerably surpassing all existing methods.A comparative analysis of AUC values further reveals that FinMHSPE outperforms state-of-the-art approaches that rely on financial features as inputs.Furthermore,our investigation identifies several valuable features for enhancing FDP model performance,notably those associated with a company’s information and growth potential. 展开更多
关键词 Financial distress prediction Feature selection Imbalanced data ensemble learning Particle swarm optimization
在线阅读 下载PDF
Domain adaptation‑based multistage ensemble learning paradigm for credit risk evaluation
11
作者 Xiaoming Zhang Lean Yu Hang Yin 《Financial Innovation》 2025年第1期891-918,共28页
Machine learning methods are widely used to evaluate the risk of small-and mediumsized enterprises(SMEs)in supply chain finance(SCF).However,there may be problems with data scarcity,feature redundancy,and poor predict... Machine learning methods are widely used to evaluate the risk of small-and mediumsized enterprises(SMEs)in supply chain finance(SCF).However,there may be problems with data scarcity,feature redundancy,and poor predictive performance.Additionally,data collected over a long time span may cause differences in the data distribution,and classic supervised learning methods may exhibit poor predictive abilities under such conditions.To address these issues,a domain-adaptation-based multistage ensemble learning paradigm(DAMEL)is proposed in this study to evaluate the credit risk of SMEs in SCF.In this methodology,a bagging resampling algorithm is first used to generate a dataset to address data scarcity.Subsequently,a random subspace is applied to integrate various features and reduce feature redundancy.Additionally,a domain adaptation approach is utilized to reduce the data distribution discrepancy in the cross-domain.Finally,dynamic model selection is developed to improve the generalization ability of the model in the fourth stage.A real-world credit dataset from the Chinese securities market was used to validate the effectiveness and feasibility of the multistage ensemble learning paradigm.The experimental results demonstrated that the proposed domain-adaptation-based multistage ensemble learning paradigm is superior to principal component analysis,joint distribution adaptation,random forest,and other ensemble and transfer learning methods.Moreover,dynamic model selection can improve the model generalization performance and prediction precision of minority samples.This can be considered a promising solution for evaluating the credit risk of SMEs in SCF for financial institutions. 展开更多
关键词 Joint distribution adaptation ensemble learning Supply chain finance Small and medium-sized enterprises Credit risk evaluation
在线阅读 下载PDF
BDS-3 Satellite Orbit Prediction Method Based on Ensemble Learning and Neural Networks
12
作者 Ruibo Wei Yao Kong +2 位作者 Mengzhao Li Feng Liu Fang Cheng 《Computers, Materials & Continua》 2025年第7期1507-1528,共22页
To address uncertainties in satellite orbit error prediction,this study proposes a novel ensemble learning-based orbit prediction method specifically designed for the BeiDou navigation satellite system(BDS).Building o... To address uncertainties in satellite orbit error prediction,this study proposes a novel ensemble learning-based orbit prediction method specifically designed for the BeiDou navigation satellite system(BDS).Building on ephemeris data and perturbation corrections,two new models are proposed:attention-enhanced BPNN(AEBP)and Transformer-ResNet-BiLSTM(TR-BiLSTM).These models effectively capture both local and global dependencies in satellite orbit data.To further enhance prediction accuracy and stability,the outputs of these two models were integrated using the gradient boosting decision tree(GBDT)ensemble learning method,which was optimized through a grid search.The main contribution of this approach is the synergistic combination of deep learning models and GBDT,which significantly improves both the accuracy and robustness of satellite orbit predictions.This model was validated using broadcast ephemeris data from the BDS-3 MEO and inclined geosynchronous orbit(IGSO)satellites.The results show that the proposed method achieves an error correction rate of 65.4%.This ensemble learning-based approach offers a highly effective solution for high-precision and stable satellite orbit predictions. 展开更多
关键词 BDS satellite orbit ensemble learning neural networks orbit error
在线阅读 下载PDF
ENBQA:An Ensemble Learning-Based Model for Beach Quality Assessment
13
作者 LI Haimeng ZHU Congmin +1 位作者 YANG Yuqing SHU Yuanming 《Journal of Ocean University of China》 2025年第5期1428-1435,共8页
The assessment of beach quality is an important prerequisite for beach development and serves as the foundation for coastal zone management and sustainable development.This topic has attracted widespread attention,and... The assessment of beach quality is an important prerequisite for beach development and serves as the foundation for coastal zone management and sustainable development.This topic has attracted widespread attention,and various evaluation systems have been established.Given that beach quality assessment(BQA)involves multidimensional and nonlinear indicators,machine learning methods are well-suited to handling complex data relationships.However,current research utilizing machine learning for BQA often faces challenges such as limited evaluation indicators and difficulties in obtaining relevant data.in this study,a machine learning-based model for beach quality evaluation is proposed to address the limitations of existing evaluation frameworks,particular-ly under conditions of data scarcity.Simulated data were generated,and the analytic hierarchy process was integrated to extract fea-tures from 21 beach evaluation factors.A comparative analysis was conducted using the following four machine learning models:de-cision tree,random forest,XGBoost,and MLP.Results indicate that XGBoost(mean squared error(MSE)=0.1825,weighted F1=0.7513)and MLP(Pearson coefficient=0.6053)outperform traditional models.Furthermore,an ensemble learning model combining XGBoost and MLP was developed,substantially improving predictive performance(reducing MSE to 0.0753,increasing the Pearson coefficient to 0.8002,and achieving an F1 score of 0.783).Validation using real data from Yangkou Beach demonstrated that the model maintained an accuracy of 58%even when 5–10 evaluation factors had randomly missing values. 展开更多
关键词 beach quality assessment analytic hierarchy process machine learning ensemble learning
在线阅读 下载PDF
A Two-Layer Network Intrusion Detection Method Incorporating LSTM and Stacking Ensemble Learning
14
作者 Jun Wang Chaoren Ge +4 位作者 Yihong Li Huimin Zhao Qiang Fu Kerang Cao Hoekyung Jung 《Computers, Materials & Continua》 2025年第6期5129-5153,共25页
Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class at... Network Intrusion Detection System(NIDS)detection of minority class attacks is always a difficult task when dealing with attacks in complex network environments.To improve the detection capability of minority-class attacks,this study proposes an intrusion detection method based on a two-layer structure.The first layer employs a CNN-BiLSTM model incorporating an attention mechanism to classify network traffic into normal traffic,majority class attacks,and merged minority class attacks.The second layer further segments the minority class attacks through Stacking ensemble learning.The datasets are selected from the generic network dataset CIC-IDS2017,NSL-KDD,and the industrial network dataset Mississippi Gas Pipeline dataset to enhance the generalization and practical applicability of the model.Experimental results show that the proposed model achieves an overall detection accuracy of 99%,99%,and 95%on the CIC-IDS2017,NSL-KDD,and industrial network datasets,respectively.It also significantly outperforms traditional methods in terms of detection accuracy and recall rate for minority class attacks.Compared with the single-layer deep learning model,the two-layer structure effectively reduces the false alarm rate while improving the minority-class attack detection performance.The research in this paper not only improves the adaptability of NIDS to complex network environments but also provides a new solution for minority-class attack detection in industrial network security. 展开更多
关键词 Two-layer architecture minority class attack stacking ensemble learning network intrusion detection
在线阅读 下载PDF
Ensemble Learning-Based Mortality Prediction After Acute Myocardial Infarction
15
作者 YAN Mingruan MIAO Yutong +3 位作者 SHENG Shuqian GAN Xiaoying HE Ben SHEN Lan 《Journal of Shanghai Jiaotong university(Science)》 2025年第1期153-165,共13页
A mortality prediction model based on small acute myocardial infarction(AMI)patients coherent with low death rate is established.In total,1639 AMI patients are selected as research objects who received treatment in se... A mortality prediction model based on small acute myocardial infarction(AMI)patients coherent with low death rate is established.In total,1639 AMI patients are selected as research objects who received treatment in seven tertiary and secondary hospitals in Shanghai between January 1,2016 and January 1,2018.Among them,72 patients deceased during the two-year follow-up.Models are established with ensemble learning framework and machine learning algorithms based on 51 physiological indicators of the patient.Shapley additive explanations algorithm and univariate test with point-biserial and phi correlation coefficients are employed to determine significant features and rank feature importance.Based on 5-fold cross validation experiment and external validation,prediction model with self-paced ensemble framework and random forest algorithm achieves the best performance with area under receiver operating characteristic curve(AUROC)score of 0.911 and recall of 0.864.Both feature ranking methods showed that ejection fractions,serum creatinine(admission),hemoglobin and Killip class are the most important features.With these top-ranked features,the simplified prediction model is capable of achieving a comparable result with AUROC score of 0.872 and recall of 0.818.This work proposes a new method to establish mortality prediction models for AMI patients based on self-paced ensemble framework,which allows models to achieve high performance with small scale of patients coherent with low death rate.It will assist in medical decision and prognosis as a new reference. 展开更多
关键词 acute myocardial infarction(AMI) ensemble learning machine learning feature engineering
原文传递
Fault Identification Method for In-Core Self-Powered Neutron Detectors Combining Graph Convolutional Network and Stacking Ensemble Learning
16
作者 LIN Weiqing LU Yanzhen +1 位作者 MIAO Xiren QIU Xinghua 《Journal of Shanghai Jiaotong university(Science)》 2025年第5期1018-1027,共10页
Self-powered neutron detectors(SPNDs)play a critical role in monitoring the safety margins and overall health of reactors,directly affecting safe operation within the reactor.In this work,a novel fault identification ... Self-powered neutron detectors(SPNDs)play a critical role in monitoring the safety margins and overall health of reactors,directly affecting safe operation within the reactor.In this work,a novel fault identification method based on graph convolutional networks(GCN)and Stacking ensemble learning is proposed for SPNDs.The GCN is employed to extract the spatial neighborhood information of SPNDs at different positions,and residuals are obtained by nonlinear fitting of SPND signals.In order to completely extract the time-varying features from residual sequences,the Stacking fusion model,integrated with various algorithms,is developed and enables the identification of five conditions for SPNDs:normal,drift,bias,precision degradation,and complete failure.The results demonstrate that the integration of diverse base-learners in the GCN-Stacking model exhibits advantages over a single model as well as enhances the stability and reliability in fault identification.Additionally,the GCN-Stacking model maintains higher accuracy in identifying faults at different reactor power levels. 展开更多
关键词 self-powered neutron detector(SPND) graph convolutional network(GCN) Stacking ensemble learning fault identification
原文传递
Ground-Glass Lung Nodules Recognition Based on CatBoost Feature Selection and Stacking Ensemble Learning
17
作者 MIAO Jun CHANG Yiru +5 位作者 CHEN Chen ZHANG Maoxuan LIU Yan QI Honggang GUO Zhijun XU Qian 《Journal of Shanghai Jiaotong university(Science)》 2025年第4期790-799,共10页
Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on ... Aimed at the issues of high feature dimensionality,excessive data redundancy,and low recognition accuracy of using single classifiers on ground-glass lung nodule recognition,a recognition method was proposed based on CatBoost feature selection and Stacking ensemble learning.First,the method uses a feature selection algorithm to filter important features and remove features with less impact,achieving the effect of data dimensionality reduction.Second,random forests classifier,decision trees,K-nearest neighbor classifier,and light gradient boosting machine were used as base classifiers,and support vector machine was used as meta classifier to fuse and construct the ensemble learning model.This measure increases the accuracy of the classification model while maintaining the diversity of the base classifiers.The experimental results show that the recognition accuracy of the proposed method reaches 94.375%.Compared to the random forest algorithm with the best performance among single classifiers,the accuracy of the proposed method is increased by 1.875%.Compared to the recent deep learning methods(ResNet+GBM+Attention and MVCSNet)on ground-glass pulmonary nodule recognition,the proposed method’s performance is also better or comparative.Experiments show that the proposed model can effectively select features and make recognition on ground-glass pulmonary nodules. 展开更多
关键词 ground-glass pulmonary nodule feature selection ensemble learning
原文传递
Real-time prediction of rock mass classification based on TBM operation big data and stacking technique of ensemble learning 被引量:34
18
作者 Shaokang Hou Yaoru Liu Qiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期123-143,共21页
Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are g... Real-time prediction of the rock mass class in front of the tunnel face is essential for the adaptive adjustment of tunnel boring machines(TBMs).During the TBM tunnelling process,a large number of operation data are generated,reflecting the interaction between the TBM system and surrounding rock,and these data can be used to evaluate the rock mass quality.This study proposed a stacking ensemble classifier for the real-time prediction of the rock mass classification using TBM operation data.Based on the Songhua River water conveyance project,a total of 7538 TBM tunnelling cycles and the corresponding rock mass classes are obtained after data preprocessing.Then,through the tree-based feature selection method,10 key TBM operation parameters are selected,and the mean values of the 10 selected features in the stable phase after removing outliers are calculated as the inputs of classifiers.The preprocessed data are randomly divided into the training set(90%)and test set(10%)using simple random sampling.Besides stacking ensemble classifier,seven individual classifiers are established as the comparison.These classifiers include support vector machine(SVM),k-nearest neighbors(KNN),random forest(RF),gradient boosting decision tree(GBDT),decision tree(DT),logistic regression(LR)and multilayer perceptron(MLP),where the hyper-parameters of each classifier are optimised using the grid search method.The prediction results show that the stacking ensemble classifier has a better performance than individual classifiers,and it shows a more powerful learning and generalisation ability for small and imbalanced samples.Additionally,a relative balance training set is obtained by the synthetic minority oversampling technique(SMOTE),and the influence of sample imbalance on the prediction performance is discussed. 展开更多
关键词 Tunnel boring machine(TBM)operation data Rock mass classification Stacking ensemble learning Sample imbalance Synthetic minority oversampling technique(SMOTE)
在线阅读 下载PDF
Estimation of diaphragm wall deflections for deep braced excavation in anisotropic clays using ensemble learning 被引量:15
19
作者 Runhong Zhang Chongzhi Wu +2 位作者 Anthony T.C.Goh Thomas Bohlke Wengang Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第1期365-373,共9页
This paper adopts the NGI-ADP soil model to carry out finite element analysis,based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated.More than one ... This paper adopts the NGI-ADP soil model to carry out finite element analysis,based on which the effects of soft clay anisotropy on the diaphragm wall deflections in the braced excavation were evaluated.More than one thousand finite element cases were numerically analyzed,followed by extensive parametric studies.Surrogate models were developed via ensemble learning methods(ELMs),including the e Xtreme Gradient Boosting(XGBoost),and Random Forest Regression(RFR)to predict the maximum lateral wall deformation(δhmax).Then the results of ELMs were compared with conventional soft computing methods such as Decision Tree Regression(DTR),Multilayer Perceptron Regression(MLPR),and Multivariate Adaptive Regression Splines(MARS).This study presents a cutting-edge application of ensemble learning in geotechnical engineering and a reasonable methodology that allows engineers to determine the wall deflection in a fast,alternative way. 展开更多
关键词 Anisotropic clay NGI-ADP Wall deflection ensemble learning eXtreme gradient boosting Random forest regression
在线阅读 下载PDF
Anti-D Chain:A Lightweight DDoS Attack Detection Scheme Based on Heterogeneous Ensemble Learning in Blockchain 被引量:10
20
作者 Bin Jia Yongquan Liang 《China Communications》 SCIE CSCD 2020年第9期11-24,共14页
With rapid development of blockchain technology,blockchain and its security theory research and practical application have become crucial.At present,a new DDoS attack has arisen,and it is the DDoS attack in blockchain... With rapid development of blockchain technology,blockchain and its security theory research and practical application have become crucial.At present,a new DDoS attack has arisen,and it is the DDoS attack in blockchain network.The attack is harmful for blockchain technology and many application scenarios.However,the traditional and existing DDoS attack detection and defense means mainly come from the centralized tactics and solution.Aiming at the above problem,the paper proposes the virtual reality parallel anti-DDoS chain design philosophy and distributed anti-D Chain detection framework based on hybrid ensemble learning.Here,Ada Boost and Random Forest are used as our ensemble learning strategy,and some different lightweight classifiers are integrated into the same ensemble learning algorithm,such as CART and ID3.Our detection framework in blockchain scene has much stronger generalization performance,universality and complementarity to identify accurately the onslaught features for DDoS attack in P2P network.Extensive experimental results confirm that our distributed heterogeneous anti-D chain detection method has better performance in six important indicators(such as Precision,Recall,F-Score,True Positive Rate,False Positive Rate,and ROC curve). 展开更多
关键词 DDoS attack detection parallel blockchain technology ensemble learning Ada Boost random forest
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部