期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Understanding the initial conditions contributing to the rapid intensification of typhoons through ensemble sensitivity analysis
1
作者 Yixuan Ren Lili Lei +2 位作者 Jian-Feng Gu Zhe-Min Tan Yi Zhang 《Atmospheric and Oceanic Science Letters》 2025年第2期36-42,共7页
While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensificati... While steady improvements have been achieved for the track forecasts of typhoons,there has been a lack of improvement for intensity forecasts.One challenge for intensity forecasts is to capture the rapid intensification(RI),whose nonlinear characteristics impose great difficulties for numerical models.The ensemble sensitivity analysis(ESA)method is used here to analyze the initial conditions that contribute to typhoon intensity forecasts,especially with RI.Six RI processes from five typhoons(Chaba,Haima,Meranti,Sarika,and Songda)in 2016,are applied with ESA,which also gives a composite initial condition that favors subsequent RI.Results from individual cases have generally similar patterns of ESA,but with different magnitudes,when various cumulus parameterization schemes are applied.To draw the initial conditions with statistical significance,sample-mean azimuthal components of ESA are obtained.Results of the composite sensitivity show that typhoons that experience RI in 24 h favor enhanced primary circulation from low to high levels,intensified secondary circulation with increased radial inflow at lower levels and increased radial outflow at upper levels,a prominent warm core at around 300 hPa,and increased humidity at low levels.As the forecast lead time increases,the patterns of ESA are retained,while the sensitivity magnitudes decay.Given the general and quantitative composite sensitivity along with associated uncertainties for different cumulus parameterization schemes,appropriate sampling of the composite sensitivity in numerical models could be beneficial to capturing the RI and improving the forecasting of typhoon intensity. 展开更多
关键词 TYPHOON Rapid intensification ensemble sensitivity analysis Composite sensitivity
在线阅读 下载PDF
Analyses and Forecasts of a Tornadic Supercell Outbreak Using a 3DVAR System Ensemble
2
作者 Zhaorong ZHUANG Nusrat YUSSOUF Jidong GAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第5期544-558,共15页
As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then eval... As part of NOAA's "Warn-On-Forecast" initiative, a convective-scale data assimilation and prediction system was developed using the WRF-ARW model and ARPS 3DVAR data assimilation technique. The system was then evaluated using retrospective short-range ensemble analyses and probabilistic forecasts of the tornadic supercell outbreak event that occurred on 24 May 2011 in Oklahoma, USA. A 36-member multi-physics ensemble system provided the initial and boundary conditions for a 3-km convective-scale ensemble system. Radial velocity and reflectivity observations from four WSR-88 Ds were assimilated into the ensemble using the ARPS 3DVAR technique. Five data assimilation and forecast experiments were conducted to evaluate the sensitivity of the system to data assimilation frequencies, in-cloud temperature adjustment schemes, and fixed- and mixed-microphysics ensembles. The results indicated that the experiment with 5-min assimilation frequency quickly built up the storm and produced a more accurate analysis compared with the 10-min assimilation frequency experiment. The predicted vertical vorticity from the moist-adiabatic in-cloud temperature adjustment scheme was larger in magnitude than that from the latent heat scheme. Cycled data assimilation yielded good forecasts, where the ensemble probability of high vertical vorticity matched reasonably well with the observed tornado damage path. Overall, the results of the study suggest that the 3DVAR analysis and forecast system can provide reasonable forecasts of tornadic supercell storms. 展开更多
关键词 ensemble 3DVAR analysis radar data assimilation probabilistic forecast supercell storm
在线阅读 下载PDF
Hierarchical Visual Analysis and Steering Framework for Astrophysical Simulations
3
作者 肖健 张加万 +3 位作者 原野 周鑫 纪丽 孙济洲 《Transactions of Tianjin University》 EI CAS 2015年第6期507-514,共8页
A framework for accelerating modern long-running astrophysical simulations is presented, which is based on a hierarchical architecture where computational steering in the high-resolution run is performed under the gui... A framework for accelerating modern long-running astrophysical simulations is presented, which is based on a hierarchical architecture where computational steering in the high-resolution run is performed under the guide of knowledge obtained in the gradually refined ensemble analyses. Several visualization schemes for facilitating ensemble management, error analysis, parameter grouping and tuning are also integrated owing to the pluggable modular design. The proposed approach is prototyped based on the Flash code, and it can be extended by introducing userdefined visualization for specific requirements. Two real-world simulations, i.e., stellar wind and supernova remnant, are carried out to verify the proposed approach. 展开更多
关键词 computational steering visual analysis hierarchical approach ensemble astrophysical simulation
在线阅读 下载PDF
Indian Ocean Dipole Response to Global Warming: A Multi-Member Study with CCSM4 被引量:1
4
作者 ZHOU Zhen-Qiang XIE Shang-Ping +1 位作者 ZHENG Xiao-Tong LIU Qinyu 《Journal of Ocean University of China》 SCIE CAS 2013年第2期209-215,共7页
Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850-2100. The model can simulat... Based on a coupled ocean-atmosphere model, the response of the Indian Ocean Dipole (IOD) mode to global warming is investigated with a six member ensemble of simulations for the period 1850-2100. The model can simulate the IOD features rea-listically, including the east-west dipole pattern and the phase locking in boreal autumn. The ensemble analysis suppresses internal variability and isolates the radiative forced response. In response to increasing greenhouse gases, a weakening of the Walker circula-tion leads to the easterly wind anomalies in the equatorial Indian Ocean and the shoaling thermocline in the eastern equatorial Indian Ocean (EEIO), and sea surface temperature and precipitation changes show an IOD-like pattern in the equatorial Indian Ocean. Al-though the thermocline feedback intensifies with shoaling, the interannual variability of the IOD mode surprisingly weakens under global warming. The zonal wind feedback of IOD is found to weaken as well, due to decreased precipitation in the EEIO. Therefore, the atmospheric feedback decreases much more than the oceanic feedback increases, causing the decreased IOD variance in this model. 展开更多
关键词 Indian Ocean Dipole (IOD) multi-member ensemble analysis global warming ocean-atmospheric interaction CCSM4
在线阅读 下载PDF
Measuring air traffic complexity based on small samples 被引量:8
5
作者 Xi ZHU Xianbin CAO Kaiquan CAI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1493-1505,共13页
Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliabl... Air traffic complexity is an objective metric for evaluating the operational condition of the airspace. It has several applications, such as airspace design and traffic flow management.Therefore, identifying a reliable method to accurately measure traffic complexity is important. Considering that many factors correlate with traffic complexity in complicated nonlinear ways,researchers have proposed several complexity evaluation methods based on machine learning models which were trained with large samples. However, the high cost of sample collection usually results in limited training set. In this paper, an ensemble learning model is proposed for measuring air traffic complexity within a sector based on small samples. To exploit the classification information within each factor, multiple diverse factor subsets(FSSs) are generated under guidance from factor noise and independence analysis. Then, a base complexity evaluator is built corresponding to each FSS. The final complexity evaluation result is obtained by integrating all results from the base evaluators. Experimental studies using real-world air traffic operation data demonstrate the advantages of our model for small-sample-based traffic complexity evaluation over other stateof-the-art methods. 展开更多
关键词 Air traffic control Air traffic complexity Correlation analysis ensemble learning Feature selection
原文传递
SST biases over the Northwest Pacific and possible causes in CMIP5 models 被引量:3
6
作者 Chenqi WANG Liwei ZOU Tianjun ZHOU 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第6期792-803,共12页
In this paper, the features and possible causes of sea surface temperature(SST) biases over the Northwest Pacific are investigated based on a mixed-layer heat budget analysis in 21 coupled general circulation models(C... In this paper, the features and possible causes of sea surface temperature(SST) biases over the Northwest Pacific are investigated based on a mixed-layer heat budget analysis in 21 coupled general circulation models(CGCMs) from phase 5 of the Coupled Model Inter-comparison Project(CMIP5). Most CMIP5 models show cold SST biases throughout the year over the Northwest Pacific. The largest biases appear during summer, and the smallest biases occur during winter. These cold SST biases are seen at the basin scale and are mainly located in the inner region of the low and mid-latitudes. According to the mixed-layer heat budget analysis, overestimation of upward net sea surface heat fluxes associated with atmospheric processes are primarily responsible for the cold SST biases. Among the different components of surface heat fluxes, overestimated upward latent heat fluxes induced by the excessively strong surface winds contribute the most to the cold SST biases during the spring, autumn, and winter seasons. Conversely, during the summer, overestimated upward latent heat fluxes and underestimated downward solar radiations at the sea surface are equally important. Further analysis suggests that the overly strong surface winds over the Northwest Pacific during winter and spring are associated with excessive precipitation over the Maritime Continent region,whereas those occurring during summer and autumn are associated with the excessive northward extension of the intertropical convergence zone(ITCZ). The excessive precipitation over the Maritime Continent region and the biases in the simulated ITCZ induce anomalous northeasterlies, which are in favor of enhancing low-level winds over the North Pacific. The enhanced surface wind increases the sea surface evaporation, which contributes to the excessive upward latent heat fluxes. Thus, the SST over the Northwest Pacific cools. 展开更多
关键词 CMIP5 multi-model ensemble SST bias Mixed-layer heat budget analysis Atmospheric processes
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部