Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant...Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders.展开更多
The increasing challenges of environmental degradation,soil erosion,and climate change have driven interest in sustainable solutions like enhanced weathering(EW)and phytoremediation.Elephant Grass(Cenchrus purpureus),...The increasing challenges of environmental degradation,soil erosion,and climate change have driven interest in sustainable solutions like enhanced weathering(EW)and phytoremediation.Elephant Grass(Cenchrus purpureus),a fast-growing perennial species,shows promise as a bioaccumulator and agent for soil weathering.This study assessed the potential of C.purpureus to improve soil quality through heavy metal(HM)uptake and EW facilitation.A 60-day greenhouse pot experiment at Jackson State University evaluated plant performance in soils amended with metabasalt rock powder at 1:1 and 2:1 rock-to-soil ratios.Biomass,growth,and HM concentrations in roots and shoots were measured via ICP-MS after wet digestion.Soil pH and magnesium(Mg)release were also monitored to assess weathering and carbon drawdown.Results showed that C.purpureus accumulated more HMs in roots at higher amendment levels,while at lower levels,metals like As,Cd,and Cr were more translocated to shoots,enhancing phytoextraction potential.High treatment favored Fe and Al uptake,possibly reducing toxic metal accumulation in edible parts.Notably,C.purpureus contributed to the weathering of 38%of metabasalt rock,leading to a 42%increase in Mg release.With high biomass,HM tolerance,and weathering capacity,C.purpureus offers a sustainable strategy for soil remediation,improved soil health,and potential support for renewable energy systems.展开更多
Objective:In recent decades,studies have underscored nuclear proteins and signaling pathways in prostate cancer(PCa)development.Key biomarkers like Enhancer of zeste homolog 2(EZH2)and Forkhead box M1(FOXM1)are expres...Objective:In recent decades,studies have underscored nuclear proteins and signaling pathways in prostate cancer(PCa)development.Key biomarkers like Enhancer of zeste homolog 2(EZH2)and Forkhead box M1(FOXM1)are expressed in both healthy and malignant prostate cells.This study aimed to demonstrate the relationship between pathological characteristics,survival,recurrence,and tissue expression of EZH2 and FOXM1 in high-risk PCa patients.Methods:PCa tissues were used in a retrospective analysis that spanned from September 2009 to August 2019.Inclusion criteria comprised pathological tumor stage(pT)3 patients with positive surgical margins or tumor proximity to inked margins within 5 mm.After case selection,tissue slides were stained for EZH2 and FOXM1 antibodies,and Allred scores were calculated.Patients or relatives of deceased patients were contacted for signed agreements and disease follow-ups.Results:The pT3b,ductal carcinoma component,and moderate EZH2 expression were associated with relapse(odds ratio[OR]6.21,95%confidence interval[CI]1.41-27.27,p=0.016;OR 7.29,95%CI 1.03-51.43,p=0.046;OR 5.96,95%CI 1.09-32.48,p=0.039;respectively).The unilateral and bilateral seminal vesicle invasion increased the likelihood of recurrence by 9.98 times and 5.36 times,and the risk of death by around 9.78 times and 10.79 times,respectively.The pT3b was linked to higher death likelihood(OR 7.16,95%CI 1.38-37.23,p=0.019),while moderate EZH2 expression did not show statistical significance(OR 4.54,95%CI 0.87-23.60,p=0.072,marginally).Pathological regional lymph node stage(pN)1 had significantly higher probability of mortality than pN unknown(3.9%vs.27%,p<0.001).PCa in the neck and apex of the prostate gland increased death risk tenfold.Conclusion:Sufficient immunoexpression of EZH2,ductal carcinoma component,and neoplastic proliferation in the seminal vesicles,apex and neck of the prostate gland correlates with elevated risks of recurrence and mortality.Clinicians should use these criteria for appropriate patient referrals,and a multicenter trial could provide accurate classifications.展开更多
Plp1-lineage Schwann cells(SCs)of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing,and the abnormal plasticity of SCs would jeopardize ...Plp1-lineage Schwann cells(SCs)of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing,and the abnormal plasticity of SCs would jeopardize the bone regeneration.However,how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood.Here,by employing single-cell transcriptional profiling combined with lineage-specific tracing models,we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.Importantly,our data demonstrated that the Sonic hedgehog(Shh)signaling was responsible for the transition process initiation,which was strongly activated by c-Jun/SIRT6/BAF170 complex-driven Shh enhancers.Collectively,these findings depict an injuryspecific niche signal-mediated Plp1-lineage cells transition towards Gli1+MSCs and may be instructive for approaches to promote bone regeneration during aging or other bone diseases.展开更多
Background:Dysregulation of enhancer transcription occurs in multiple cancers.Enhancer RNAs(eRNAs)are transcribed products from enhancers that play critical roles in transcriptional control.Characterizing the genetic ...Background:Dysregulation of enhancer transcription occurs in multiple cancers.Enhancer RNAs(eRNAs)are transcribed products from enhancers that play critical roles in transcriptional control.Characterizing the genetic basis of eRNA expression may elucidate the molecular mechanisms underlying cancers.Methods:Initially,a comprehensive analysis of eRNA quantitative trait loci(eRNAQTLs)was performed in The Cancer Genome Atlas(TCGA),and functional features were characterized using multi-omics data.To establish the first eRNAQTL profiles for colorectal cancer(CRC)in China,epigenomic data were used to define active enhancers,which were subsequently integrated with transcription and genotyping data from 154 paired CRC samples.Finally,largescale case-control studies(34,585 cases and 69,544 controls)were conducted along with multipronged experiments to investigate the potential mechanisms by which candidate eRNAQTLs affect CRC risk.Results:A total of 300,112 eRNAQTLs were identified across 30 different cancer types,which exert their influence on eRNA transcription by modulating chromatin status,binding affinity to transcription factors and RNA-binding proteins.These eRNAQTLs were found to be significantly enriched in cancer risk loci,explaining a substantial proportion of cancer heritability.Additionally,tumor-specific eRNAQTLs exhibited high responsiveness to the development of cancer.Moreover,the target genes of these eRNAs were associated with dysregulated signaling pathways and immune cell infiltration in cancer,highlighting their potential as therapeutic targets.Furthermore,multiple ethnic population studies have confirmed that an eRNAQTL rs3094296-T variant decreases the risk of CRC in populations from China(OR=0.91,95%CI 0.88–0.95,P=2.92×10^(-7))and Europe(OR=0.92,95%CI 0.88–0.95,P=4.61×10^(-6)).Mechanistically,rs3094296 had an allele-specific effect on the transcription of the eRNA ENSR00000155786,which functioned as a transcriptional activator promoting the expression of its target gene SENP7.These two genes synergistically suppressed tumor cell proliferation.Our curated list of variants,genes,and drugs has been made available in CancereRNAQTL(http://canernaqtl.whu.edu.cn/#/)to serve as an informative resource for advancing this field.Conclusion:Our findings underscore the significance of eRNAQTLs in transcriptional regulation and disease heritability,pinpointing the potential of eRNA-based therapeutic strategies in cancers.展开更多
The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.Howev...The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.However,whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood.In the current study,we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout(KO)human bronchial epithelial cells(BEAS-2B).A total of 943 active regular enhancers and 370 super-enhancers(SEs)disappeared upon the deletion of p53,indicating that p53 modulates the activity of hundreds of enhancer elements.We found that one p53-dependent SE,located on chromosome 9 and designated as KLF4-SE,regulated the expression of the Krüppel-like factor 4(KLF4)gene.Furthermore,the deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression,but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model.Subsequently,in TP53 KO cells,the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency.Consistently,KLF4 expression also decreased in lung cancer tissues and cell lines.It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells.Collectively,our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function.Therefore,our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.展开更多
Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying t...Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying the highly ordered lipid structure of the lipid layer and by destroying the hydrogen-bond network was described. The application of borneol in promoting the transdermal absorption of the active ingredients of traditional Chinese medicine and chemical drugs was introduced. The application of borneol as a natural ingredient added to functional cosmetics was summarized, and its effects on skin-spot treatment, acne skin care, eczema skin care, skin repair and anti-oxidation were introduced. Finally, the possible problems in the application of borneol in cosmetics were put forward, and the application prospect of borneol in the development of cosmetics was given.展开更多
BACKGROUND Although the 2021 Chinese Clinical Practice Guidelines for Enhanced Recovery after Surgery(ERAS)provide recommendations for ERAS in gastrointestinal surgery,the clinical application of standard ERAS nursing...BACKGROUND Although the 2021 Chinese Clinical Practice Guidelines for Enhanced Recovery after Surgery(ERAS)provide recommendations for ERAS in gastrointestinal surgery,the clinical application of standard ERAS nursing models is challenging due to the variety of diseases involved in gastrointestinal surgery and the com-plex factors contributing to patient stress responses.Moreover,stress responses are more severe in older adult patients.Therefore,precision medicine is required to improve the quality of nursing care and promote postoperative recovery in gastrointestinal surgery.and demonstrate nursing benefits through clinical practice.METHODS This randomized clinical trial first established an evidence-based nursing ERAS protocol in older adult patients based on literature related to perioperative nursing measures for gastrointestinal surgery stress response.Next,392 older adult patients who underwent gastrointestinal surgery and were admitted to our hospital between December 2021 and June 2023 were categorized into two groups to receive evidence-based(study group)or conventional(control group)ERAS nursing models,respectively.Intraoperative physiological parameters during surgery and postoperative recovery indicators were compared between the groups.RESULTS Among 64 domestic and international studies,the stress responses of older adult patients mainly included emotional anxiety,sleep disorders,gastrointestinal discomfort,physical weakness,pain,and swelling.The appropriate nursing interventions included comprehensive psychological counseling,pre-and postoperative nutritional support,temperature control,pain management,and rehabilitation training.Compared with the control group,the study group showed lower heart rate,mean arterial pressure,blood glucose level,and adrenaline level;shorter duration of drainage tube placement,time to first flatus,time to first ambulation,and postoperative hospital stay;lower anxiety scores on postoperative day 3;and lower incidences of postoperative infection,obstruction,poor wound healing,and gastrointestinal reactions were lower in the study group(all P<0.05).CONCLUSION The evidence-based nursing measures targeting stress responses based on the conventional ERAS nursing model resulted in stable intraoperative physiological parameters during surgery,promoted postoperative recovery,and reduced the incidence of complications.展开更多
As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability...As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.展开更多
A two-way K/Ka-band series-Doherty PA(SDPA)with a distributed impedance inverting network(IIN)for millimeter wave applications is presented in this article.The proposed distributed IIN contributes to achieve wideband ...A two-way K/Ka-band series-Doherty PA(SDPA)with a distributed impedance inverting network(IIN)for millimeter wave applications is presented in this article.The proposed distributed IIN contributes to achieve wideband linear and power back-off(PBO)efficiency enhancement.Implemented in 65 nm bulk CMOS technology,this work realizes a measured 3 dB band-width of 15.5 GHz with 21.2 dB peak small-signal gain at 34.2 GHz.Under 1-V power supply,it achieves OP1dB over 13.4 dBm and Psat over 16 dBm between 21 to 30 GHz.The measured maximum Psat,OP1dB,peak/OP1dB/6dBPBO PAE results are 17.5,14.7 dBm,and 28.2%/23.2%/13.2%.Without digital pre-distortion(DPD)and equalization,EVMs are lower than-25.2 dB for 200 MHz 64-QAM signals.Besides,this work achieves-33.35,-23.52,and-20 dB EVMs for 100 MHz 256-QAM,600 MHz 64-QAM and 2 GHz 16-QAM signals at 27 GHz without DPD and equalization.展开更多
Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrate...Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrates.Here we present a SM-SERS scheme that involves simultaneously giant chemical enhancement from WS22D materials,giant electromagnetic enhancement from plasmonic nanogap hot spot,and inhibition of molecular fluorescence influence under near-infrared laser illumination.Remarkably we find Coulomb attraction between analyte and gold nanoparticle can trigger spontaneous formation of molecule-hotspot pairing with high precision,stability and robustness.The scheme has enabled realization of universal,robust,fast,and large-scale uniform SM-SERS detection for three Raman molecules of rhodamine B,rhodamine 6G,and crystal violet with a very low detection limit of 10−16 M and at a very fast spectrum acquisition time of 50 ms.展开更多
In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,th...In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics.展开更多
Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxyge...Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.展开更多
The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic e...The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs.展开更多
The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratoonin...The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratooning system extends the exposure window to Magnaporthe oryzae infection,thereby elevating the probability of disease incidence.展开更多
Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the...Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.展开更多
This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the surviva...This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment techni...In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82171552 and 82170479)the Natural Science Foundation of Shanghai Ctiy(No.21ZR1457500)the Science and Technology Bureau of Shanghai Putuo District(No.ptkwws202102).
文摘Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders.
文摘The increasing challenges of environmental degradation,soil erosion,and climate change have driven interest in sustainable solutions like enhanced weathering(EW)and phytoremediation.Elephant Grass(Cenchrus purpureus),a fast-growing perennial species,shows promise as a bioaccumulator and agent for soil weathering.This study assessed the potential of C.purpureus to improve soil quality through heavy metal(HM)uptake and EW facilitation.A 60-day greenhouse pot experiment at Jackson State University evaluated plant performance in soils amended with metabasalt rock powder at 1:1 and 2:1 rock-to-soil ratios.Biomass,growth,and HM concentrations in roots and shoots were measured via ICP-MS after wet digestion.Soil pH and magnesium(Mg)release were also monitored to assess weathering and carbon drawdown.Results showed that C.purpureus accumulated more HMs in roots at higher amendment levels,while at lower levels,metals like As,Cd,and Cr were more translocated to shoots,enhancing phytoextraction potential.High treatment favored Fe and Al uptake,possibly reducing toxic metal accumulation in edible parts.Notably,C.purpureus contributed to the weathering of 38%of metabasalt rock,leading to a 42%increase in Mg release.With high biomass,HM tolerance,and weathering capacity,C.purpureus offers a sustainable strategy for soil remediation,improved soil health,and potential support for renewable energy systems.
文摘Objective:In recent decades,studies have underscored nuclear proteins and signaling pathways in prostate cancer(PCa)development.Key biomarkers like Enhancer of zeste homolog 2(EZH2)and Forkhead box M1(FOXM1)are expressed in both healthy and malignant prostate cells.This study aimed to demonstrate the relationship between pathological characteristics,survival,recurrence,and tissue expression of EZH2 and FOXM1 in high-risk PCa patients.Methods:PCa tissues were used in a retrospective analysis that spanned from September 2009 to August 2019.Inclusion criteria comprised pathological tumor stage(pT)3 patients with positive surgical margins or tumor proximity to inked margins within 5 mm.After case selection,tissue slides were stained for EZH2 and FOXM1 antibodies,and Allred scores were calculated.Patients or relatives of deceased patients were contacted for signed agreements and disease follow-ups.Results:The pT3b,ductal carcinoma component,and moderate EZH2 expression were associated with relapse(odds ratio[OR]6.21,95%confidence interval[CI]1.41-27.27,p=0.016;OR 7.29,95%CI 1.03-51.43,p=0.046;OR 5.96,95%CI 1.09-32.48,p=0.039;respectively).The unilateral and bilateral seminal vesicle invasion increased the likelihood of recurrence by 9.98 times and 5.36 times,and the risk of death by around 9.78 times and 10.79 times,respectively.The pT3b was linked to higher death likelihood(OR 7.16,95%CI 1.38-37.23,p=0.019),while moderate EZH2 expression did not show statistical significance(OR 4.54,95%CI 0.87-23.60,p=0.072,marginally).Pathological regional lymph node stage(pN)1 had significantly higher probability of mortality than pN unknown(3.9%vs.27%,p<0.001).PCa in the neck and apex of the prostate gland increased death risk tenfold.Conclusion:Sufficient immunoexpression of EZH2,ductal carcinoma component,and neoplastic proliferation in the seminal vesicles,apex and neck of the prostate gland correlates with elevated risks of recurrence and mortality.Clinicians should use these criteria for appropriate patient referrals,and a multicenter trial could provide accurate classifications.
基金supported by the National Natural Science Foundation of China(grants 81970910 and 82370931)Jiangsu Province Capability Improvement Project through Science,Technology and Education-Jiangsu Provincial Research Hospital Cultivation Unit(YJXYYJSDW4)Jiangsu Provincial Medical Innovation Center(CXZX202227).
文摘Plp1-lineage Schwann cells(SCs)of peripheral nerve play a critical role in vascular remodeling and osteogenic differentiation during the early stage of bone healing,and the abnormal plasticity of SCs would jeopardize the bone regeneration.However,how Plp1-lineage cells respond to injury and initiate the vascularized osteogenesis remains incompletely understood.Here,by employing single-cell transcriptional profiling combined with lineage-specific tracing models,we uncover that Plp1-lineage cells undergoing injury-induced glia-to-MSCs transition contributed to osteogenesis and revascularization in the initial stage of bone injury.Importantly,our data demonstrated that the Sonic hedgehog(Shh)signaling was responsible for the transition process initiation,which was strongly activated by c-Jun/SIRT6/BAF170 complex-driven Shh enhancers.Collectively,these findings depict an injuryspecific niche signal-mediated Plp1-lineage cells transition towards Gli1+MSCs and may be instructive for approaches to promote bone regeneration during aging or other bone diseases.
基金supported by the National Science Fund for Excellent Young Scholars(NSFC-82322058)the Program of National Natural Science Foundation of China(NSFC-82103929,NSFC-82273713)+10 种基金the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)the National Science Fund for Distinguished Young Scholars of Hubei Province of China(2023AFA046)the Fundamental Research Funds for the Central Universities(WHU:2042022kf1205)Fundamental Research Funds for the Central Universities(WHU:2042022kf1031)for Ying Zhuthe Fundamental Research Funds for the Central Universities(2042022rc0026,2042023kf1005)for Xiao-Ping Miaothe Knowledge Innovation Program of Wuhan(whkxjsj011,2023020201010073)for Jian-Bo Tianthe Science and Technology Innovation Seed Fund of Zhongnan Hospital of Wuhan University(znpy2019060)for Yong-Chang Weithe Distinguished Young Scholars of China(NSFC-81925032)the Key Program of National Natural Science Foundation of China(NSFC-82130098)the Youth Program of National Natural Science Foundation of China(NSFC-82003547)the Program of Health Commission of Hubei Province(WJ2023M045)。
文摘Background:Dysregulation of enhancer transcription occurs in multiple cancers.Enhancer RNAs(eRNAs)are transcribed products from enhancers that play critical roles in transcriptional control.Characterizing the genetic basis of eRNA expression may elucidate the molecular mechanisms underlying cancers.Methods:Initially,a comprehensive analysis of eRNA quantitative trait loci(eRNAQTLs)was performed in The Cancer Genome Atlas(TCGA),and functional features were characterized using multi-omics data.To establish the first eRNAQTL profiles for colorectal cancer(CRC)in China,epigenomic data were used to define active enhancers,which were subsequently integrated with transcription and genotyping data from 154 paired CRC samples.Finally,largescale case-control studies(34,585 cases and 69,544 controls)were conducted along with multipronged experiments to investigate the potential mechanisms by which candidate eRNAQTLs affect CRC risk.Results:A total of 300,112 eRNAQTLs were identified across 30 different cancer types,which exert their influence on eRNA transcription by modulating chromatin status,binding affinity to transcription factors and RNA-binding proteins.These eRNAQTLs were found to be significantly enriched in cancer risk loci,explaining a substantial proportion of cancer heritability.Additionally,tumor-specific eRNAQTLs exhibited high responsiveness to the development of cancer.Moreover,the target genes of these eRNAs were associated with dysregulated signaling pathways and immune cell infiltration in cancer,highlighting their potential as therapeutic targets.Furthermore,multiple ethnic population studies have confirmed that an eRNAQTL rs3094296-T variant decreases the risk of CRC in populations from China(OR=0.91,95%CI 0.88–0.95,P=2.92×10^(-7))and Europe(OR=0.92,95%CI 0.88–0.95,P=4.61×10^(-6)).Mechanistically,rs3094296 had an allele-specific effect on the transcription of the eRNA ENSR00000155786,which functioned as a transcriptional activator promoting the expression of its target gene SENP7.These two genes synergistically suppressed tumor cell proliferation.Our curated list of variants,genes,and drugs has been made available in CancereRNAQTL(http://canernaqtl.whu.edu.cn/#/)to serve as an informative resource for advancing this field.Conclusion:Our findings underscore the significance of eRNAQTLs in transcriptional regulation and disease heritability,pinpointing the potential of eRNA-based therapeutic strategies in cancers.
基金the National Natural Science Foundation of China(Grant No.82072580).
文摘The abnormality of the p53 tumor suppressor is crucial in lung cancer development,because p53 regulates target gene promoters to combat cancer.Recent studies have shown extensive p53 binding to enhancer elements.However,whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood.In the current study,we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout(KO)human bronchial epithelial cells(BEAS-2B).A total of 943 active regular enhancers and 370 super-enhancers(SEs)disappeared upon the deletion of p53,indicating that p53 modulates the activity of hundreds of enhancer elements.We found that one p53-dependent SE,located on chromosome 9 and designated as KLF4-SE,regulated the expression of the Krüppel-like factor 4(KLF4)gene.Furthermore,the deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression,but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model.Subsequently,in TP53 KO cells,the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency.Consistently,KLF4 expression also decreased in lung cancer tissues and cell lines.It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells.Collectively,our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function.Therefore,our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.
文摘Borneol, as a traditional natural permeation enhancer, has been widely used to promote the transdermal absorption of active ingredients. In this review, the mechanism of borneol in promoting permeation by destroying the highly ordered lipid structure of the lipid layer and by destroying the hydrogen-bond network was described. The application of borneol in promoting the transdermal absorption of the active ingredients of traditional Chinese medicine and chemical drugs was introduced. The application of borneol as a natural ingredient added to functional cosmetics was summarized, and its effects on skin-spot treatment, acne skin care, eczema skin care, skin repair and anti-oxidation were introduced. Finally, the possible problems in the application of borneol in cosmetics were put forward, and the application prospect of borneol in the development of cosmetics was given.
文摘BACKGROUND Although the 2021 Chinese Clinical Practice Guidelines for Enhanced Recovery after Surgery(ERAS)provide recommendations for ERAS in gastrointestinal surgery,the clinical application of standard ERAS nursing models is challenging due to the variety of diseases involved in gastrointestinal surgery and the com-plex factors contributing to patient stress responses.Moreover,stress responses are more severe in older adult patients.Therefore,precision medicine is required to improve the quality of nursing care and promote postoperative recovery in gastrointestinal surgery.and demonstrate nursing benefits through clinical practice.METHODS This randomized clinical trial first established an evidence-based nursing ERAS protocol in older adult patients based on literature related to perioperative nursing measures for gastrointestinal surgery stress response.Next,392 older adult patients who underwent gastrointestinal surgery and were admitted to our hospital between December 2021 and June 2023 were categorized into two groups to receive evidence-based(study group)or conventional(control group)ERAS nursing models,respectively.Intraoperative physiological parameters during surgery and postoperative recovery indicators were compared between the groups.RESULTS Among 64 domestic and international studies,the stress responses of older adult patients mainly included emotional anxiety,sleep disorders,gastrointestinal discomfort,physical weakness,pain,and swelling.The appropriate nursing interventions included comprehensive psychological counseling,pre-and postoperative nutritional support,temperature control,pain management,and rehabilitation training.Compared with the control group,the study group showed lower heart rate,mean arterial pressure,blood glucose level,and adrenaline level;shorter duration of drainage tube placement,time to first flatus,time to first ambulation,and postoperative hospital stay;lower anxiety scores on postoperative day 3;and lower incidences of postoperative infection,obstruction,poor wound healing,and gastrointestinal reactions were lower in the study group(all P<0.05).CONCLUSION The evidence-based nursing measures targeting stress responses based on the conventional ERAS nursing model resulted in stable intraoperative physiological parameters during surgery,promoted postoperative recovery,and reduced the incidence of complications.
基金supported by the Exchange Program of Highend Foreign Experts of Ministry of Science and Technology of People’s Republic of China(No.G2023041003L)the Natural Science Foundation of Shaanxi Provincial Department of Education(No.23JK0367)+1 种基金the Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology(Nos.SLGRCQD2208,SLGRCQD2306,SLGRCQD2133)Contaminated Soil Remediation and Resource Utilization Innovation Team at Shaanxi University of Technology。
文摘As battery technology evolves and demand for efficient energy storage solutions,aqueous zinc ion batteries(AZIBs)have garnered significant attention due to their safety and environmental benefits.However,the stability of cathode materials under high-voltage conditions remains a critical challenge in improving its energy density.This review systematically explores the failure mechanisms of high-voltage cathode materials in AZIBs,including hydrogen evolution reaction,phase transformation and dissolution phenomena.To address these challenges,we propose a range of advanced strategies aimed at improving the stability of cathode materials.These strategies include surface coating and doping techniques designed to fortify the surface properties and structure integrity of the cathode materials under high-voltage conditions.Additionally,we emphasize the importance of designing antioxidant electrolytes,with a focus on understanding and optimizing electrolyte decomposition mechanisms.The review also highlights the significance of modifying conductive agents and employing innovative separators to further enhance the stability of AZIBs.By integrating these cutting-edge approaches,this review anticipates substantial advancements in the stability of high-voltage cathode materials,paving the way for the broader application and development of AZIBs in energy storage.
基金supported in part by the National Key Research and Development Program of China under Grant 2020YFB1807300the Beijing Advanced Innovation Center for Integrated Circuits。
文摘A two-way K/Ka-band series-Doherty PA(SDPA)with a distributed impedance inverting network(IIN)for millimeter wave applications is presented in this article.The proposed distributed IIN contributes to achieve wideband linear and power back-off(PBO)efficiency enhancement.Implemented in 65 nm bulk CMOS technology,this work realizes a measured 3 dB band-width of 15.5 GHz with 21.2 dB peak small-signal gain at 34.2 GHz.Under 1-V power supply,it achieves OP1dB over 13.4 dBm and Psat over 16 dBm between 21 to 30 GHz.The measured maximum Psat,OP1dB,peak/OP1dB/6dBPBO PAE results are 17.5,14.7 dBm,and 28.2%/23.2%/13.2%.Without digital pre-distortion(DPD)and equalization,EVMs are lower than-25.2 dB for 200 MHz 64-QAM signals.Besides,this work achieves-33.35,-23.52,and-20 dB EVMs for 100 MHz 256-QAM,600 MHz 64-QAM and 2 GHz 16-QAM signals at 27 GHz without DPD and equalization.
基金financial support from Science and Technology Project of Guangdong(2020B010190001)National Natural Science Foundation(12434016).
文摘Raman spectroscopy offers a great power to detect,analyze and identify molecules,and monitor their temporal dynamics and evolution when combined with single-molecule surface-enhanced Raman scattering(SM-SERS)substrates.Here we present a SM-SERS scheme that involves simultaneously giant chemical enhancement from WS22D materials,giant electromagnetic enhancement from plasmonic nanogap hot spot,and inhibition of molecular fluorescence influence under near-infrared laser illumination.Remarkably we find Coulomb attraction between analyte and gold nanoparticle can trigger spontaneous formation of molecule-hotspot pairing with high precision,stability and robustness.The scheme has enabled realization of universal,robust,fast,and large-scale uniform SM-SERS detection for three Raman molecules of rhodamine B,rhodamine 6G,and crystal violet with a very low detection limit of 10−16 M and at a very fast spectrum acquisition time of 50 ms.
基金supported by the Natural Science Foundation of Shandong Province(nos.ZR2023MF047,ZR2024MA055 and ZR2023QF139)the Enterprise Commissioned Project(nos.2024HX104 and 2024HX140)+1 种基金the China University Industry-University-Research Innovation Foundation(nos.2021ZYA11003 and 2021ITA05032)the Science and Technology Plan for Youth Innovation of Shandong's Universities(no.2019KJN012).
文摘In low-light environments,captured images often exhibit issues such as insufficient clarity and detail loss,which significantly degrade the accuracy of subsequent target recognition tasks.To tackle these challenges,this study presents a novel low-light image enhancement algorithm that leverages virtual hazy image generation through dehazing models based on statistical analysis.The proposed algorithm initiates the enhancement process by transforming the low-light image into a virtual hazy image,followed by image segmentation using a quadtree method.To improve the accuracy and robustness of atmospheric light estimation,the algorithm incorporates a genetic algorithm to optimize the quadtree-based estimation of atmospheric light regions.Additionally,this method employs an adaptive window adjustment mechanism to derive the dark channel prior image,which is subsequently refined using morphological operations and guided filtering.The final enhanced image is reconstructed through the hazy image degradation model.Extensive experimental evaluations across multiple datasets verify the superiority of the designed framework,achieving a peak signal-to-noise ratio(PSNR)of 17.09 and a structural similarity index(SSIM)of 0.74.These results indicate that the proposed algorithm not only effectively enhances image contrast and brightness but also outperforms traditional methods in terms of subjective and objective evaluation metrics.
基金support from the National Natural Science Foundation of China(Nos.22277056,21977052)the Distinguished Young Scholars of Jiangsu Province(No.BK20230006)+2 种基金the Natural Science Foundation of Jiangsu Province(Nos.BK20230977,BK20231090)the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province(No.23KJB150020)the Jiangsu Excellent Postdoctoral Program(No.2022ZB758)。
文摘Metal complexes hold significant promise in tumor diagnosis and treatment.However,their potential applications in photodynamic therapy(PDT)are hindered by issues such as poor photostability,low yield of reactive oxygen species(ROS),and aggregation-induced ROS quenching.To address these challenges,we present a molecular self-assembly strategy utilizing aggregation-induced emission(AIE)conjugates for metal complexes.As a proof of concept,we synthesized a mitochondrial-targeting cyclometalated Ir(Ⅲ)photosensitizer Ir-TPE.This approach significantly enhances the photodynamic effect while mitigating the dark toxicity associated with AIE groups.Ir-TPE readily self-assembles into nanoaggregates in aqueous solution,leading to a significant production of ROS upon light irradiation.Photoirradiated Ir-TPE triggers multiple modes of death by excessively accumulating ROS in the mitochondria,resulting in mitochondrial DNA damage.This damage can lead to ferroptosis and autophagy,two forms of cell death that are highly cytotoxic to cancer cells.The aggregation-enhanced photodynamic effect of Ir-TPE significantly enhances the production of ROS,leading to a more pronounced cytotoxic effect.In vitro and in vivo experiments demonstrate this aggregation-enhanced PDT approach achieves effective in situ tumor eradication.This study not only addresses the limitations of metal complexes in terms of low ROS production due to aggregation but also highlights the potential of this strategy for enhancing ROS production in PDT.
基金supported by the National Natural Science Foundation of China(52304021,52104022,52204031)the Natural Science Foundation of Sichuan Province(2022NSFSC0205,2024NSFSC0201,2023NSFSC0947)the National Science and Technology Major Projects of China(2017ZX05049006-010).
文摘The global energy demand is increasing rapidly,and it is imperative to develop shale hydrocarbon re-sources vigorously.The prerequisite for enhancing the exploitation efficiency of shale reservoirs is the systematic elucidation of the occurrence characteristics,flow behavior,and enhanced oil recovery(EOR)mechanisms of shale oil within commonly developed nanopores.Molecular dynamics(MD)technique can simulate the occurrence,flow,and extraction processes of shale oil at the nanoscale,and then quantitatively characterize various fluid properties,flow characteristics,and action mechanisms under different reservoir conditions by calculating and analyzing a series of MD parameters.However,the existing review on the application of MD simulation in shale oil reservoirs is not systematic enough and lacks a summary of technical challenges and solutions.Therefore,recent MD studies on shale oil res-ervoirs were summarized and analyzed.Firstly,the applicability of force fields and ensembles of MD in shale reservoirs with different reservoir conditions and fluid properties was discussed.Subsequently,the calculation methods and application examples of MD parameters characterizing various properties of fluids at the microscale were summarized.Then,the application of MD simulation in the study of shale oil occurrence characteristics,flow behavior,and EOR mechanisms was reviewed,along with the elucidation of corresponding micro-mechanisms.Moreover,influencing factors of pore structure,wall properties,reservoir conditions,fluid components,injection/production parameters,formation water,and inorganic salt ions were analyzed,and some new conclusions were obtained.Finally,the main challenges associated with the application of MD simulations to shale oil reservoirs were discussed,and reasonable prospects for future MD research directions were proposed.The purpose of this review is to provide theoretical basis and methodological support for applying MD simulation to study shale oil reservoirs.
基金supported by the Key Research and Development Program Project of Hunan Province, China (Grant No. 2023NK2003)the National Key Research and Development Program of China (Grant No. 2022YFD2301001-03)the National Key Research and Development Program of China (Grant No. 2022YFD2301003)
文摘The ratooning system enhances agricultural efficiency by reducing secondary sowing and resource input while maintaining rice yield parity with double cropping.However,the prolonged growth duration of the rice ratooning system extends the exposure window to Magnaporthe oryzae infection,thereby elevating the probability of disease incidence.
基金Project supported by the National Key Research and Development Program of China(Grant No.2023YFA1407000)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0460000)+4 种基金the National Natural Science Foundation of China(Grant Nos.12322401,12127807,and 12393832)CAS Key Research Program of Frontier Sciences(Grant No.ZDBS-LY-SLH004)Beijing Nova Program(Grant No.20230484301)Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2023125)CAS Project for Young Scientists in Basic Research(Grant No.YSBR-026)。
文摘Edge structures are ubiquitous in the processing and fabrication of various optoelectronic devices.Novel physical properties and enhanced light–matter interactions are anticipated to occur at crystal edges due to the broken spatial translational symmetry.However,the intensity of first-order Raman scattering at crystal edges has been rarely explored,although the mechanical stress and edge characteristics have been thoroughly studied by the Raman peak shift and the spectral features of the edge-related Raman modes.Here,by taking Ga As crystal with a well-defined edge as an example,we reveal the intensity enhancement of Raman-active modes and the emergence of Raman-forbidden modes under specific polarization configurations at the edge.This is attributed to the presence of a hot spot at the edge due to the redistributed electromagnetic fields and electromagnetic wave propagations of incident laser and Raman signal near the edge,which are confirmed by the finite-difference time-domain simulations.Spatially-resolved Raman intensities of both Raman-active and Raman-forbidden modes near the edge are calculated based on the redistributed electromagnetic fields,which quantitatively reproduce the corresponding experimental results.These findings offer new insights into the intensity enhancement of Raman scattering at crystal edges and present a new avenue to manipulate light–matter interactions of crystal by manufacturing various types of edges and to characterize the edge structures in photonic and optoelectronic devices.
文摘This editorial examines a recent study that used radiomics based on computed tomography(CT)to predict the expression of the fibroblast-related gene enhancer of zeste homolog 2(EZH2)and its correlation with the survival of patients with hepatocellular carcinoma(HCC).By integrating radiomics with molecular analysis,the study presented a strategy for accurately predicting the expression of EZH2 from CT scans.The findings demonstrated a strong link between the radiomics model,EZH2 expression,and patient prognosis.This noninvasive approach provides valuable insights into the therapeutic management of HCC.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
基金supported by the Major Science and Technology Project of Zhongshan City(No.2022AJ004)the Key Basic and Applied Research Program of Guangdong Province(Nos.2019B030302010 and 2022B1515120082)Guangdong Science and Technology Innovation Project(No.2021TX06C111).
文摘In general,the rapid growth of α-Fe clusters is a challenge in high Fe-content Fe-based amorphous alloys,negatively affecting their physical properties.Herein,we introduce an efficient and rapid post-treatment technique known as ultrasonic vibration rapid processing(UVRP),which enables the formation of high-density strong magnetic α-Fe clusters,thereby enhancing the soft magnetic properties of Fe_(78)Si(13)B_(9) amorphous alloy ribbon.