Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These ...Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These challenges highlight the need for more precise and efficient design methodologies to ensure structural stability and economic feasibility.This research proposes an innovative automatic optimization inverse design method(AOIDM)that integrates an enhanced genetic algorithm(EGA)with a multiobjective optimization model.By combining advanced computational techniques with engineering principles,this approach improves search efficiency by 30%and enhances deformation control accuracy by 25%.Additionally,the approach exhibits potential for reducing carbon emissions to align with sustainable engineering goals.The effectiveness of this approach was validated through comprehensive data analysis and practical case studies,demonstrating its ability to optimize retaining structure designs under complex asymmetric loading conditions.This research establishes a new standard for precision and efficiency in automated excavation design,with accompanying improvements in safety and cost-effectiveness.Furthermore,it lays the foundation for future geotechnical engineering advancements,offering a robust solution to one of the most challenging aspects of modern excavation projects.展开更多
基金supported by the National Key R&D Program of China(Grant No.2023YFC3009400)the National Natural Science Foundation of China(Grant Nos.52238009 and 52208344).
文摘Conventional pit excavation engineering methods often struggle to manage the complex deformation patterns associated with asymmetric excavations,resulting in significant safety risks and increased project costs.These challenges highlight the need for more precise and efficient design methodologies to ensure structural stability and economic feasibility.This research proposes an innovative automatic optimization inverse design method(AOIDM)that integrates an enhanced genetic algorithm(EGA)with a multiobjective optimization model.By combining advanced computational techniques with engineering principles,this approach improves search efficiency by 30%and enhances deformation control accuracy by 25%.Additionally,the approach exhibits potential for reducing carbon emissions to align with sustainable engineering goals.The effectiveness of this approach was validated through comprehensive data analysis and practical case studies,demonstrating its ability to optimize retaining structure designs under complex asymmetric loading conditions.This research establishes a new standard for precision and efficiency in automated excavation design,with accompanying improvements in safety and cost-effectiveness.Furthermore,it lays the foundation for future geotechnical engineering advancements,offering a robust solution to one of the most challenging aspects of modern excavation projects.