期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Quantile-based optimization under uncertainties for complex engineering structures using an active learning basis-adaptive PC-Kriging model
1
作者 Yulian GONG Jianguo ZHANG +1 位作者 Dan XU Ying HUANG 《Chinese Journal of Aeronautics》 2025年第1期340-352,共13页
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ... The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures. 展开更多
关键词 Reliability-based design optimization Quantile-based Basis-adaptive PC-Kriging Complex engineering structures Active learning Uncertainty
原文传递
Safety Evaluation and Management of Engineering Structures Based on Intelligent Technology
2
作者 Lingxu Li Mingchang Ma Zitong Ma 《Proceedings of Business and Economic Studies》 2025年第3期312-316,共5页
With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering stru... With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering structures.This paper discusses the role of intelligent technologies(such as artificial intelligence,Internet of Things,BIM,big data analysis,etc.)in the monitoring,evaluation,and maintenance of engineering structure safety.By studying the principle,application scenarios,and advantages of intelligent technology in structural safety evaluation,this paper summarizes how intelligent technology can improve engineering management efficiency and reduce safety risks,and puts forward the trend and challenge of future development. 展开更多
关键词 Intelligent technology engineering structure Safety evaluation Structural health monitoring BIM Big data
在线阅读 下载PDF
Kinked Rebar and Engineering Structures Applying Kinked Materials:State-ofthe-Art Review
3
作者 Chengquan Wang Lei Xu +4 位作者 Xinquan Wang Yun Zou Kangyu Wang Boyan Ping Xiao Li 《Structural Durability & Health Monitoring》 2025年第2期233-263,共31页
Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of ... Kinked rebar is a special type of steel material,which is installed in beam column nodes and frame beams.It effectively enhances the blast resilience,seismic collapse resistance,and progressive collapse resistance of reinforced concrete(RC)structures without imposing substantial cost burdens,thereby emerging as a focal point of recent research endeavors.On the basis of explaining the working principle of kinked rebars,this paper reviews the research status of kinked rebars at home and abroad from three core domains:the tensile mechanical properties of kinked rebars,beam column nodes with kinked rebars,and concrete frame structures with kinked rebars.The analysis underscores that the straightening process of kinked rebars does not compromise their ultimate strength but significantly bolsters structural ductility and enhances energy dissipation capabilities.In beam-column joints,the incorporation of kinked rebars facilitates the seamless transfer of plastic hinges,adhering to the design principle of“strong columns and weak beams.”In addition,kinked rebars can greatly improve the resistance of the beam;The seismic resistance,internal explosion resistance,and progressive collapse resistance of reinforced concrete frame structures with kinked rebar have significantly improved.Beyond its primary application,the principle of kinked rebar was extended to other applications of kinked materials such as corrugated steel plates and origami structures,and the stress characteristics of related components and structures were studied.Intriguingly,this paper also proposes the application of kinked rebars in bridge engineering,aiming to address the challenges of localized damage concentration and excessive residual displacement in RC bridge piers.The introduction of kinked rebars in piers is envisioned to mitigate these issues,with the paper outlining its advantages and feasibility,thereby offering valuable insights for future research on kinked reinforcement and seismic design strategies for bridges. 展开更多
关键词 Structural engineering kinked rebar seismic performance explosion-resistant performance progressive collapse
在线阅读 下载PDF
Synthesis of Reviews on Auscultation, Approaches, and Methods for Engineering Structures
4
作者 Cheikh Ahmed Tidiane Ly Diogoye Diouf Séni Tamba 《International Journal of Geosciences》 CAS 2024年第10期765-773,共9页
Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, e... Topometric auscultation is used to monitor the durability of structures, measure deformations linked to the structure of a structure or to the movement of the ground over a part of the globe, set up warning systems, etc. It first appeared as a visual method and rapidly evolved through the various techniques used. Some of these techniques using topography are used in several fields (civil engineering, geodesy, topography, mechanics, nuclear engineering, hydraulics, physics, etc.). These topometric techniques have undergone major changes as a result of technological advances, growing needs in the monitoring of movements or deformations, increased requirements and new challenges. The methodology adopted depends on the measuring instrument used, the parameters to be estimated and access to the area to be measured. There are two types of methods: destructive and non-destructive. In addition to the visual method, they can also be classified as mechanical, physico-chemical, dynamometric, electrophysical and geometric. The estimated parameter varies according to the methodology adopted. It can be defined by coordinates, distances, potential, electrical resistance, etc. 展开更多
关键词 AUSCULTATION engineering structure Topometry METHOD REVIEW
在线阅读 下载PDF
Some Problems in Nonlinear Dynamic Instability and Bifurcation Theory for Engineering Structures 被引量:1
5
作者 彭妙娟 程玉民 《Journal of Shanghai University(English Edition)》 CAS 2005年第1期29-34,共6页
In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and t... In civil engineering, the nonlinear dynamic instability of structures occurs at a bifurcation point or a limit point. The instability at a bifurcation point can be analyzed with the theory of nonlinear dynamics, and that at a limit point can be discussed with the theory of elastoplasticity. In this paper, the nonlinear dynamic instability of structures was treated with mathematical and mechanical theories. The research methods for the problems of structural nonlinear dynamic stability were discussed first, and then the criterion of stability or instability of structures, the method to obtain the bifurcation point and the limit point, and the formulae of the directions of the branch solutions at a bifurcation point were elucidated. These methods can be applied to the problems of nonlinear dynamic instability of structures such as reticulated shells, space grid structures, and so on. Key words nonlinear dynamic instability - engineering structures - non-stationary nonlinear system - bifurcation point - instability at a bifurcation point - limit point MSC 2000 74K25 Project supported by the Science Foundation of Shanghai Municipal Commission of Education (Grant No. 02AK04), the Science Foundation of Shanghai Municipal Commission of Science and Technology (Grant No. 02ZA14034) 展开更多
关键词 nonlinear dynamic instability engineering structures non-stationary nonlinear system bifurcation point instability at a bifurcation point limit point
在线阅读 下载PDF
Structure engineering of cathode host materials for Li-S batteries 被引量:3
6
作者 Jia-Jun Long Hua Yu Wen-Bo Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1370-1389,共20页
Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges in... Although lithium-sulfur batteries are one of the favorable candidates for next-generation energy storage devices,a few key challenges that have not been addressed have limited its commercialization.These challenges include lithium dendrite growth in the anode side,volume change of the active material,poor electrical conductivity,dissolution and migration of poly sulfides,and slow rate of solid-state reactions in the cathode side.Since the electrochemical performance of lithium-sulfur batteries is greatly affected by the design of the cathode host material,it has also been widely discussed in addressing the abovementioned issues.In this paper,three design ideas of cathode host materials in terms of microstructure,crystal structure and electronic structure are introduced and summarized.Crucially,the current progress of these three structural design strategies and their effects on the electrochemical performance of lithium-sulfur batteries are discussed in detail.Finally,future directions in the structural design of cathode materials for lithium-sulfur batteries are discussed and further perspectives are provided. 展开更多
关键词 Lithium-sulfur batteries structure engineering CATHODE Host materials
原文传递
From VIB‑to VB‑Group Transition Metal Disulfides:Structure Engineering Modulation for Superior Electromagnetic Wave Absorption 被引量:3
7
作者 Junye Cheng Yongheng Jin +10 位作者 Jinghan Zhao Qi Jing Bailong Gu Jialiang Wei Shenghui Yi Mingming Li Wanli Nie Qinghua Qin Deqing Zhang Guangping Zheng Renchao Che 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期218-257,共40页
The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various field... The laminated transition metal disulfides(TMDs),which are well known as typical two-dimensional(2D)semiconductive materials,possess a unique layered structure,leading to their wide-spread applications in various fields,such as catalysis,energy storage,sensing,etc.In recent years,a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption(EMA)has been carried out.Therefore,it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application.In this review,recent advances in the development of electromagnetic wave(EMW)absorbers based on TMDs,ranging from the VIB group to the VB group are summarized.Their compositions,microstructures,electronic properties,and synthesis methods are presented in detail.Particularly,the modulation of structure engineering from the aspects of heterostructures,defects,morphologies and phases are systematically summarized,focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance.Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance. 展开更多
关键词 Transition metal disulfides Electromagnetic wave absorption Impedance matching structure engineering modulation
在线阅读 下载PDF
Structural engineering of MXenes towards high electrochemical performance in supercapacitors
8
作者 Yan Liu Kaiyang Guo +4 位作者 Yuanmeng Ge Wenzheng Yan Kai Gu Yapeng Tian Xinwei Cui 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1783-1812,共30页
Supercapacitors(SCs)stand out among various energy storage devices owing to their high power density and long-term cyc-ling stability.As new two-dimensional material,MXenes have become a research hotspot in recent yea... Supercapacitors(SCs)stand out among various energy storage devices owing to their high power density and long-term cyc-ling stability.As new two-dimensional material,MXenes have become a research hotspot in recent years owing to their unique structure and rich surface functional groups.Compared with other materials,MXenes are more promising for SCs owing to their tunable precurs-ors,structural stability,and excellent electrical conductivity.However,the rate performance and electrochemical reaction activity of MXene materials are poor,and stacking severely limits their application.Therefore,various modification strategies are employed to im-prove the electrochemical performance of MXene materials.As the modification strategy of MXene electrode materials often involves in-creasing the number of ion transport channels to expose more active sites,the packing density is also affected to different degrees.There-fore,achieving a balance between high volumetric capacitance and rapid ion transport has become a key issue for the application of MXene-based SCs in wearable devices and microdevices.In this paper,the latest progress in the preparation methods and modification strategies of MXenes in recent years is reviewed with the aim of achieving both high volumetric capacitance and high ion transport for ex-panding the application of MXene-based SCs in microdevices and wearable devices. 展开更多
关键词 MXenes structural engineering electrochemical performance SUPERCAPACITOR
在线阅读 下载PDF
Unlocking the structure and anion synergistic modulation of MoSe_(2) anode for ultra-stable and high-rate sodium-ion storage
9
作者 Kang Xu Yu-Hui Li +6 位作者 Xin Wang Yu-Peng Cao Shuo-Tong Wang Liang Cao Qi-Tu Zhang Zhe-Fei Wang Jun Yang 《Rare Metals》 2025年第3期1661-1673,共13页
The two-dimensional MoSe_(2)possesses a large interlayer spacing(0.65 nm)and a narrow bandgap(1.1 eV),showing potential in sodium-ion storage.However,it faces slow kinetics and volume stress during Na^(+)(de)intercala... The two-dimensional MoSe_(2)possesses a large interlayer spacing(0.65 nm)and a narrow bandgap(1.1 eV),showing potential in sodium-ion storage.However,it faces slow kinetics and volume stress during Na^(+)(de)intercalation process,thereby affecting the cycling stability and lifespan of sodium-ion batteries(SIBs).In this work,a novel approach involving anionic doping and structural design has been proposed,wherein a two-step in-situ selenization and surface thermal annealing doping process is applied to fabricate a novel configuration material of fluorine-doped MoSe_(2)@nitrogen-doped carbon nanosheets(F-MoSe_(2)@FNC).The obtained F-MoSe_(2)@FNC,benefiting from the dual advantages of structure and F-doping,synergistically promotes and accelerates the stable(de)intercalation of Na^(+).Henceforth,F-MoSe_(2)@FNC demonstrates notable characteristics in terms of reversible specific capacity,boasting a high initial coulombic efficiency of 76.97%,alongside remarkable rate capabilities and cyclic stability.The constructed F-MoSe_(2)@FNC anode-based half cell manifests exceptional longevity,enduring up to 2550 cycles at 10 A·g^(-1)with a specific capacity of 322.04 mAh·g^(-1).Its electrochemical performance surpasses that of MoSe_(2)@NC and Pure MoSe_(2),underscoring the significance of the proposed synergistic modulation.Through comprehensive kinetic analyses,encompassing in-situ electrochemical impedance spectroscopy(EIS),it is elucidated that the F-MoSe_(2)@FNC electrode showcases elevated pseudo-capacitance and rapid diffusion attributes during charge and discharge processes.Furthermore,the assembled full-cell(F-MoSe_(2)@FNC//Na_(3)V_(2)(PO_(4))_(3))attains a notable energy density of 166.94 Wh·kg^(-1).This design provides insights for the optimization of MoSe_(2)electrodes and their applications in SIBs. 展开更多
关键词 Structural engineering Anion modulation Molybdenum diselenide Sodium-ion batteries Fast kinetics
原文传递
Effective stress dissipation by multi-dimensional architecture engineering for ultrafast and ultralong sodium storage
10
作者 Man Zhang Jing Zhu +7 位作者 Qianqian Li Fenghua Zheng Sijiang Hu Youguo Huang Hongqiang Wang Xing Ou Qichang Pan Qingyu Li 《Journal of Energy Chemistry》 2025年第2期619-629,I0013,共12页
Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial... Stress accumulation is a key factor leading to sodium storage performance deterioration for NiSe_(2)-based anodes.Therefore,inhibiting the concentrated local stress during the sodiataion/desodiation process is crucial for acquiring stable NiSe2-based materials for sodium-ion batteries(SIBs),Herein,a stress dissipation strategy driven by architecture engineering is proposed,which can achieve ultrafast and ultralong sodium storage properties.Different from the conventional sphere-like or rod-like architecture,the three-dimensional(3D)flower-like NiSe_(2)@C composite is delicately designed and assembled with onedimensional nanorods and carbon framework.More importantly,the fundamental mechanism of improved structure stability is unveiled by simulations and experimental results simultaneously.It demonstrates that this designed multidimensional flower-like architecture with dispersed nanorods can balance the structural mismatch,avoid concentrated local strain,and relax the internal stress,mainly induced by the unavoidable volume variation during the repeated conversion processes.Moreover,it can provide more Na^(+)-storage sites and multi-directional migration pathways,leading to a fast Na^(+)-migration channel with boosted reaction kinetic.As expected,it delivers superior rate performance(441 mA h g^(-1)at 5.0 A g^(-1))and long cycling stability(563 mA h g^(-1)at 1.0 A g^(-1)over 1000 cycles)for SIBs.This work provides useful insights for designing high-performance conversion-based anode materials for SIBs. 展开更多
关键词 Stress dissipation Multi-dimensional architecture structure engineering Conversion-based anodes Sodium-ion batteries
在线阅读 下载PDF
Dual Structure Reinforces Interfacial Polarized MXene/PVDF-TrFE Piezoelectric Nanocomposite for Pressure Monitoring
11
作者 Yong Ao Long Jin +10 位作者 Shenglong Wang Bolin Lan Guo Tian Tianpei Xu Longchao Huang Zihan Wang Yue Sun Tao Yang Weili Deng Fan Yang Weiqing Yang 《Nano-Micro Letters》 2025年第12期526-539,共14页
The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement.However,there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena ... The emerging interfacial polarization strategy exhibits applicative potential in piezoelectric enhancement.However,there is an ongoing effort to address the inherent limitations arising from charge bridging phenomena and stochastic interface disorder that plague the improvement of piezoelectric performance.Here,we report a dual structure reinforced MXene/PVDF-TrFE piezoelectric composite,whose piezoelectricity is enhanced under the coupling effect of interfacial polarization and structural design.Synergistically,molecular dynamics simulations,density functional theory calculations and experimental validation revealed the details of interfacial interactions,which promotes the net spontaneous polarization of PVDF-TrFE from the 0.56 to 31.41 Debye.The oriented MXene distribution and porous structure not only tripled the piezoelectric response but also achieved an eightfold increase in sensitivity within the low-pressure region,along with demonstrating cyclic stability exceeding 20,000 cycles.The properties reinforcement originating from dual structure is elucidated through the finite element simulation and experimental validation.Attributed to the excellent piezoelectric response and deep learning algorithm,the sensor can effectively recognize the signals of artery pulse and finger flexion.Finally,a 3×3 sensor array is fabricated to monitor the pressure distribution wirelessly.This study provides an innovative methodology for reinforcing interfacial polarized piezoelectric materials and insight into structural designs. 展开更多
关键词 Piezoelectric composite MXene/PVDF-TrFE Interfacial polarization Structural engineering
在线阅读 下载PDF
Rational engineering of triazine-benzene linked covalent-organic frameworks for efficient CO_(2)photoreduction
12
作者 Yanghe Fu Yijing Gao +6 位作者 Huilin Jia Yuncai Zhao Yan Feng Weidong Zhu Fumin Zhang Morris D.Argyle Maohong Fan 《Green Energy & Environment》 2025年第4期804-812,共9页
Three large π-conjugated and imine-based COFs,named TFP-TAB,TFP-TTA,and TTA-TTB,were synthesized via the ordered incorporation of benzene and triazine rings in the same host framework to study how the structural unit... Three large π-conjugated and imine-based COFs,named TFP-TAB,TFP-TTA,and TTA-TTB,were synthesized via the ordered incorporation of benzene and triazine rings in the same host framework to study how the structural units affect the efficiency of CO_(2)photoreduction.Results from both experiments and density-functional theory(DFT)calculations indicate the separation and transfer of the photoinduced charges is highly related to the triazine-N content and the conjugation degree in the skeletons of COFs.High-efficiency CO_(2)photoreduction can be achieved by rationally adjusting the number and position of both benzene and triazine rings in the COFs.Specifically,TTA-TTB,with orderly interlaced triazine-benzene heterojunctions,can suppress the recombination probability of electrons and holes,which effectively immobilizes the key species(COOH)and lowers the free energy change of the potential-determining step,and thus exhibits a superior visible-light-induced photocatalytic activity that yields 121.7 μmol HCOOH g^(-1)h^(-1).This research,therefore,helps to elucidate the effects of the different structural blocks in COFs on inherent heterogeneous photocatalysis for CO_(2)reduction at a molecular level. 展开更多
关键词 Chemical structure engineering Photocatalysis CO_(2)reduction COFs Molecular simulation
在线阅读 下载PDF
Impact of Oxygen Vacancy on Band Structure Engineering of n-p Codoped Anatase TiO2
13
作者 孟强强 王加军 +1 位作者 黄静 李群祥 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2015年第2期155-160,I0001,共7页
Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i... Doping with various impurities is an effective approach to improve the photoelectrochemical properties of TiO2. Here, we explore the effect of oxygen vacancy on geometric and elec- tronic properties of compensated (i.e. V-N and Cr-C) and non-compensated (i.e. V-C and Cr-N) codoped anatase TiO2 by performing extensive density functional theory calculations. Theoretical results show that oxygen vacancy prefers to the neighboring site of metal dopant (i.e. V or Cr atom). After introduction of oxygen vacancy, the unoccupied impurity bands located within band gap of these codoped TiO2 will be filled with electrons, and the posi- tion of conduction band offset does not change obviously, which result in the reduction of photoinduced carrier recombination and the good performance for hydrogen production via water splitting. Moreover, we find that oxygen vacancy is easily introduced in V-N codoped TiO2 under O-poor condition. These theoretical insights are helpful for designing codoped TiO2 with high photoelectrochemical performance. 展开更多
关键词 Oxygen vacancy Band structure engineering n-p codoped Anatase TiO2
在线阅读 下载PDF
Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications 被引量:6
14
作者 Qingdong Ou Xiaozhi Bao +5 位作者 Yinan Zhang Huaiyu Shao Guichuan Xing Xiangping Li Liyang Shao Qiaoliang Bao 《Nano Materials Science》 CAS 2019年第4期268-287,共20页
Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthe... Metal halide perovskite nanostructures have emerged as low-dimensional semiconductors of great significance in many fields such as photovoltaics,photonics,and optoelectronics.Extensive efforts on the controlled synthesis of perovskite nanostructures have been made towards potential device applications.The engineering of their band structures holds great promise in the rational tuning of the electronic and optical properties of perovskite nanostructures,which is one of the keys to achieving efficient and multifunctional optoelectronic devices.In this article,we summarize recent advances in band structure engineering of perovskite nanostructures.A survey of bandgap engineering of nanostructured perovskites is firstly presented from the aspects of dimensionality tailoring,compositional substitution,phase segregation and transition,as well as strain and pressure stimuli.The strategies of electronic doping are then reviewed,including defect-induced self-doping,inorganic or organic molecules-based chemical doping,and modification by metal ions or nanostructures.Based on the bandgap engineering and electronic doping,discussions on engineering energy band alignments in perovskite nanostructures are provided for building high-performance perovskite p-n junctions and heterostructures.At last,we provide our perspectives in engineering band structures of perovskite nanostructures towards future low-energy optoelectronics technologies. 展开更多
关键词 Band structure engineering Perovskite nanostructures Optoelectronic applications Doping Heterostructures
在线阅读 下载PDF
Progress on band structure engineering of twisted bilayer and two-dimensional moiré heterostructures 被引量:1
15
作者 Wei Yao Martin Aeschlimann Shuyun Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第12期5-16,共12页
Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking ... Artificially constructed van der Waals heterostructures(vdWHs)provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics.Two methods for building vdWHs have been developed:stacking two-dimensional(2D)materials into a bilayer structure with different lattice constants,or with different orientations.The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states.In this article,we review a series of novel quantum states discovered in two model vdWH systems—graphene/hexagonal boron nitride(hBN)hetero-bilayer and twisted bilayer graphene(tBLG),and discuss how the electronic structures are modified by such stacking and twisting.We also provide perspectives for future studies on hetero-bilayer materials,from which an expansion of 2D material phase library is expected. 展开更多
关键词 twisted bilayer graphene van der Waals heterostructure band structure engineering
原文传递
Surface structural engineering of carbonyl iron powder for enhancing microwave absorption and anti-oxidation performance 被引量:2
16
作者 Ming-Lu Huang Cheng-Long Luo +3 位作者 Chang Sun Kun-Yan Zhao Yingqing Ou Ming Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第11期201-209,共9页
Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP abs... Surface structural engineering is desirable in modifying the surface performance of carbonyl iron powder(CIP)to enhance microwave absorption(MA)and anti-oxidation performance.Herein,the surface shape-dependent CIP absorbers are designed via surface coating with zinc oxide(ZnO)nanoparticles and then a thermal annealing treatment.The morphology of ZnO nanoparticles which can be easily regulated by controlling the annealing temperature ultimately affects the MA performance of CIP coating with ZnO nanoparticles(CIP@ZnO).The core-shell CIP@ZnO particles with cubic cone ZnO nanoparticles exhibit ex-cellent MA performance and thermal stability in comparison to the original CIP.Specifically,the CIP@ZnO annealed at 350 ℃(CIP@ZnO-350)samples which have the cubic cone ZnO nanoparticles exhibit a min-imum reflection loss(RLmin)of-55.35 dB at a thickness of 2.1 mm and a maximum effective absorp-tion bandwidth(EAB)of 7.09 GHz at a thickness of 2.0 mm.In addition,the antioxidant property of the CIP@ZnO composite particles is abruptly enhanced,which breaks the restriction of the application of CIP at high temperatures.The superior MA performance of CIP@ZnO particles with cubic cone ZnO nanoparti-cles comes from the enhancement in surface shape-dependent multiple microwave scattering,interfacial polarization,and electromagnetic-dielectric synergism between ZnO and CIP. 展开更多
关键词 Microwave absorption Carbonyl iron powder ANTI-OXIDATION Interfacial polarization Surface structural engineering
原文传递
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
17
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY Reaction barrier
在线阅读 下载PDF
Intelligent vectorial surrogate modeling framework for multi-objective reliability estimation of aerospace engineering structural systems
18
作者 Da TENG Yunwen FENG +1 位作者 Junyu CHEN Cheng LU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第12期156-173,共18页
To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fus... To improve the computational efficiency and accuracy of multi-objective reliability estimation for aerospace engineering structural systems,the Intelligent Vectorial Surrogate Modeling(IVSM)concept is presented by fusing the compact support region,surrogate modeling methods,matrix theory,and Bayesian optimization strategy.In this concept,the compact support region is employed to select effective modeling samples;the surrogate modeling methods are employed to establish a functional relationship between input variables and output responses;the matrix theory is adopted to establish the vector and cell arrays of modeling parameters and synchronously determine multi-objective limit state functions;the Bayesian optimization strategy is utilized to search for the optimal hyperparameters for modeling.Under this concept,the Intelligent Vectorial Neural Network(IVNN)method is proposed based on deep neural network to realize the reliability analysis of multi-objective aerospace engineering structural systems synchronously.The multioutput response function approximation problem and two engineering application cases(i.e.,landing gear brake system temperature and aeroengine turbine blisk multi-failures)are used to verify the applicability of IVNN method.The results indicate that the proposed approach holds advantages in modeling properties and simulation performances.The efforts of this paper can offer a valuable reference for the improvement of multi-objective reliability assessment theory. 展开更多
关键词 Intelligent vectorial surrogate modeling Intelligent vectorial neural network Aerospace engineering structural systems Multi-objective reliability estimation Matrix theory
原文传递
Cost-optimization based target reliabilities for design of structures exposed to fire 被引量:1
19
作者 Ranjit Kumar Chaudhary Thomas Gernay Ruben Van Coile 《Resilient Cities and Structures》 2024年第2期20-33,共14页
Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,howev... Adequacy of structural fire design in uncommon structures is conceptually ensured through cost-benefit analysis where the future costs are balanced against the benefits of safety investment.Cost-benefit analyses,however,are complicated and computationally challenging,and hence impractical for application to individual projects.To address this issue,design guidance proposes target reliability indices for normal design conditions,but no target reliability indices are defined for structural fire design.We revisit the background of the cost-optimization based approach underlying normal design target reliability indices then we extend this approach for the case of fire design of structures.We also propose a modified objective function for cost-optimization which simplifies the evaluation of target reliability indices and reduces the number of assumptions.The optimum safety level is expressed as a function of a new dimensionless variable named“Damage-to-investment indicator”(DII).The cost optimization approach is validated for the target reliability indices for normal design condition.The method is then applied for evaluating DII and the associated optimum reliability indices for fire-exposed structures.Two case studies are presented:(i)a one-way loaded reinforced concrete slab and(ii)a steel column under axial loading.This study thus provides a framework for deriving optimum(target)reliability index for structural fire design which can support the development of rational provisions in codes and standards. 展开更多
关键词 Target reliability Cost optimization Life-cycle cost Structural fire engineering Design code
在线阅读 下载PDF
Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries:Structural and electronic engineering
20
作者 Jianmei Han Peng Wang +4 位作者 Hua Zhang Ning Song Xuguang An Baojuan Xi Shenglin Xiong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期147-166,共20页
Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox... Lithium-sulfur batteries(LSBs)boasting remarkable energy density have garnered significant attention within academic and industrial spheres.Nevertheless,the progression of LSBs remains constrained by the languid redox kinetics intrinsic to sulfur and the pronounced shuttle effect induced by lithium polysulfides(Li PSs),which seriously affecting the energy density,cycling life and rate capacity.The conceptualization and implementation of catalytic materials stand acknowledged as a propitious stratagem for orchestrating kinetic modulation,particularly in excavating the conversion of LiPSs and has evolved into a focal point for disposing.Among them,chalcogenide catalytic materials(CCMs)have shown satisfactory catalytic effects ascribe to the unique physicochemical properties,and have been extensively developed in recent years.Considering the lack of systematic summary regarding the development of CCMs and corresponding performance optimization strategies,herein,we initiate a comprehensive review regarding the recent progress of CCMs for effective collaborative immobilization and accelerated transformation kinetics of Li PSs.Following that,the modulation strategies to improve the catalytic activity of CCMs are summarized,including structural engineering(morphology engineering,surface/interface engineering,crystal engineering)and electronic engineering(doping and vacancy,etc.).Finally,the application prospect of CCMs in LSBs is clarified,and some enlightenment is provided for the reasonable design of CCMs serving practical LSBs. 展开更多
关键词 Lithium-sulfur batteries CHALCOGENIDE Catalytic materials Lithium polysulfides Structural engineering Electronic engineering
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部