期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Accelerated Sequential Deposition Reaction via Crystal Orientation Engineering for Low-Temperature,High-Efficiency Carbon-Electrode CsPbBr_(3) Solar Cells 被引量:2
1
作者 Zeyang Zhang Weidong Zhu +10 位作者 Tianjiao Han Tianran Wang Wenming Chai Jiaduo Zhu He Xi Dazheng Chen Gang Lu Peng Dong Jincheng Zhang Chunfu Zhang Yue Hao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期168-175,共8页
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en... Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved. 展开更多
关键词 carbon-electrode perovskite solar cells crystal orientation engineering CsPbBr_(3) low temperature two-step sequential deposition
在线阅读 下载PDF
Applying the model driven generative domain engineering method to develop self-organizing architectural solutions for mobile robot
2
作者 LIANG Hai-hua ZHU Miao-liang 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第10期1652-1661,共10页
Model driven generative domain engineering (MDGDE) is a domain engineering method aiming to develop optimized, reusable architectures, components and aspects for application engineering. Agents are regarded in MDGDE a... Model driven generative domain engineering (MDGDE) is a domain engineering method aiming to develop optimized, reusable architectures, components and aspects for application engineering. Agents are regarded in MDGDE as special objects having more autonomy, and taking more initiative. Design of the agent involves three levels of activities: logical analysis and design, physical analysis, physical design. This classification corresponds to domain analysis and design, application analysis, and application design. Agent is an important analysis and design tool for MDGDE because it facilitates development of complex distributed system—the mobile robot. According to MDGDE, we designed a distributed communication middleware and a set of event-driven agents, which enables the robot to initiate actions adaptively to the dynamical changes in the environment. This paper describes our approach as well as its motivations and our practice. 展开更多
关键词 Domain engineering Agent oriented software engineering Mobile robot
在线阅读 下载PDF
Low-temperature induced crystallographic orientation boosting Li storage performance of Na_(2)MoO_(4)·2H_(2)O
3
作者 Jia-Qi Ma Yan-Li Chen +6 位作者 Qiong Peng Yun-Peng Qu Jun-Fei Ding Xiu Gong Jing-Liang Yang Xiao-Si Qi Yun-Lei Zhou 《Rare Metals》 2025年第1期135-146,共12页
The design and development of high-performance anodes pose significant challenges in the construction of next-generation rechargeable lithium-ion batteries(LIBs).Sodium molybdate dihydrate(Na_(2)MoO_(4)·2H_(2)O)h... The design and development of high-performance anodes pose significant challenges in the construction of next-generation rechargeable lithium-ion batteries(LIBs).Sodium molybdate dihydrate(Na_(2)MoO_(4)·2H_(2)O)has garnered increasing attention due to its cost-effectiveness,non-toxicity and earth abundance.To enhance the Li storage performance of Na_(2)MoO_(4)·2H_(2)O,a crystallographic orientation regulation strategy is proposed in this work.Initially,density functional theory calculations are carried out to demonstrate that the(020)crystal plane of Na_(2)MoO_(4)·2H_(2)O offers the lowest energy barrier for Li^(+)migration.Subsequently,the preferred crystallographic orientation of Na_(2)MoO_(4)·2H_(2)O crystal is tuned through a low-temperature recrystallization method.Furthermore,the microstructure and phase changes of Na_(2)MoO_(4)·2H_(2)O during the lithiation/de-lithiation process are studied using in situ and ex situ XRD tests,ex situ XPS and cyclic voltammetry to unravel its Li^(+)storage mechanism.Upon application as LIBs anode,the Na_(2)MoO_(4)·2H_(2)O single-crystal particles with a preferred(020)surface exhibit superior reversible capacity,high-capacity retention and high cycling stability.The enhanced Li storage performance should be attributed to the regulated crystallographic orientation and small changes in the crystal microstructure during the charge/discharge process,which facilitates Li^(+)migration and bolsters structural stability.Notably,this study introduces a novel concept and a simple synthesis method for the advancement of electrodes in rechargeable batteries. 展开更多
关键词 Sodium molybdate dehydrate Lithium-ion battery Crystallographic orientation engineering Low-temperature recrystallization
原文传递
Crystal orientation dependent charge transfer dynamics and interfacial water configuration boosting photoelectrocatalytic water oxidation to H2O_(2)
4
作者 Yan Zhao Zhenming Tian +7 位作者 Qisen Jia Ting Yao Jiashu Li Yanan Wang Xuejing Cui Jing Liu Xin Chen Luhua Jiang 《Chinese Journal of Structural Chemistry》 2025年第7期35-48,共14页
Photoelectrochemical water oxidation reaction (PEC-WOR) as a sustainable route to produce H_(2)O_(2) is attractive but limited by low activity and poor product selectivity of photoanodes due to limited photogenerated ... Photoelectrochemical water oxidation reaction (PEC-WOR) as a sustainable route to produce H_(2)O_(2) is attractive but limited by low activity and poor product selectivity of photoanodes due to limited photogenerated charge efficiency and unfavorable thermodynamics. Herein, by crystal orientation engineering, the WO_(3) photoanode exposing (200) facets achieves both superior WOR activity (15.4 mA cm^(−2) at 1.76 VRHE) and high selectivity to H_(2)O_(2) (∼70%). Comprehensive experimental and theoretical investigations discover that the high PEC-WOR activity of WO_(3)-(200) is attributed to the rapid photogenerated charge separation/transfer both in bulk and at interfaces of WO_(3)-(200) facet, which reduces the charge transfer resistance. This, coupling with the unique defective hydrogen bonding network at the WO_(3)-(200)/electrolyte interface evidenced by operando PEC Fourier transform infrared spectroscopy, facilitating the outward-transfer of the WOR-produced H^(+), lowers the overall reaction barrier for the PEC-WOR. The superior selectivity of PEC-WOR to H_(2)O_(2) is ascribed to the unique defective hydrogen bonding network alleviated adsorption of ∗OH over the WO_(3)-(200) facet, which specially lowers the energy barrier of the 2-electron pathway, as compared to the 4-electron pathway. This work addresses the significant role of crystal orientation engineering on photoelectrocatalytic activity and selectivity, and sheds lights on the underlying PEC mechanism by understanding the water adsorption behaviors under illumination. The knowledge gained is expected to be extended to other photoeletrochemical reactions. 展开更多
关键词 Photoelectrocatalytic water oxidation SELECTIVITY Crystal orientation engineering Operando fourier transform infrared spectroscopy Interfacial water structure
原文传递
Integrating blockchain technology within an information ecosystem
5
作者 Francesco Salzano Lodovica Marchesi +1 位作者 Remo Pareschi Roberto Tonelli 《Blockchain(Research and Applications)》 2024年第4期70-82,共13页
Context:Blockchain-based information ecosystems(BBIEs)are a type of information ecosystem in which blockchain technology is used to provide a trust mechanism among parties and to manage shared business logic,breaking ... Context:Blockchain-based information ecosystems(BBIEs)are a type of information ecosystem in which blockchain technology is used to provide a trust mechanism among parties and to manage shared business logic,breaking the traditional scheme of information ecosystems dominated by a leading company and leveraging the decentralization of data management,information flow,and business logic.Objective:In this paper,we’d like to propose an architecture and the technical aspects concerning creating a BBIE,underlining the supplied advantages and the logic decomposition among the business and storage components.Method:The requirements are derived from the current needs of the collaborative business and the data collected by surveying practitioners.To meet these needs,we followed the Grounded Theory research approach.We validate our architectural schema against a case study on managing a wine supply chain involving different companies and supervision authorities.Results:The proposed solution integrates blockchain-based applications with the existing information system as a module of the ecosystem,leveraging on the low costs,scalability,and high-level security because of the restricted access to the network.Conclusion:We must go a long way in deepening and refining the possibilities offered by technology in supporting innovative multi-organizational business models.BBIEs can contribute substantially to paving the way in such a direction. 展开更多
关键词 Information system Blockchain Blockchain oriented software engineering(BOSE) Blockchain as a service(BaaS) Identity management system(IMS)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部