期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Environment signal dependent biocontainment systems for engineered organisms:Leveraging triggered responses and combinatorial systems
1
作者 Shreya Varma Khushi Ash Gulati +2 位作者 Janani Sriramakrishnan Riyaa Kedar Ganla Ritu Raval 《Synthetic and Systems Biotechnology》 2025年第2期356-364,共9页
As synthetic biology advances,the necessity for robust biocontainment strategies for genetically engineered organisms(GEOs)grows increasingly critical to mitigate biosafety risks related to their potential environment... As synthetic biology advances,the necessity for robust biocontainment strategies for genetically engineered organisms(GEOs)grows increasingly critical to mitigate biosafety risks related to their potential environmental release.This paper aims to evaluate environment signal-dependent biocontainment systems for engineered organisms,focusing specifically on leveraging triggered responses and combinatorial systems.There are different types of triggers-chemical,light,temperature,and pH-this review illustrates how these systems can be designed to respond to environmental signals,ensuring a higher safety profile.It also focuses on combinatorial biocontainment to avoid consequences of unintended GEO release into an external environment.Case studies are discussed to demonstrate the practical applications of these systems in real-world scenarios. 展开更多
关键词 Synthetic biology Genetic circuits Biocontainment engineered organisms Triggered responses Combinatorial systems
原文传递
Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects 被引量:15
2
作者 Sujuan Yu Jingfu Liu +1 位作者 Yongguang Yin Mohai Shen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期198-217,共20页
Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect ... Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect the fate and transport of ENPs, as well as the bioavailability and toxicity of ENPs to organisms. However, because of the complexity of DOM and the shortage of useful characterization methods, large knowledge gaps exist in our understanding of the interactions between DOM and ENPs. In this article, we systematically reviewed the interactions between DOM and ENPs, discussed the effects of DOM on the environmental behavior of ENPs, and described the changes in bioavailability and toxicity of ENPs caused by DOM. Critical evaluations of published references suggest further need for assessing and predicting the influences of DOM on the transport,transformation, bioavailability, and toxicity of ENPs in the environment. 展开更多
关键词 Dissolved organic matter engineered nanoparticles Interaction mechanisms Environmental behavior Toxicity Bioavailability
原文传递
Global Top Ten Engineering Achievements 2025
3
作者 Junzhi Cui Jian-Feng Chen 《Engineering》 2025年第12期1-3,共3页
Engineering benefits humanity,and technology creates the future.On October 13,2025,the Global Top Ten Engineering Achievements 2025,selected by the Chinese Academy of Engineering’s flagship journal Engineering,were o... Engineering benefits humanity,and technology creates the future.On October 13,2025,the Global Top Ten Engineering Achievements 2025,selected by the Chinese Academy of Engineering’s flagship journal Engineering,were officially released at the World Federation of Engineering Organizations 2025 General Assembly,jointly organized by the World Federation of Engineering Organizations,China Association for Science and Technology,Chinese Academy of Engineering,and Shanghai Municipal People’s Government. 展开更多
关键词 World Federation Engineering Organizations Chinese Academy Engineering technology creates future China Association Science Technology global top ten engineering achievements general assembly engineering benefits humanity Engineering journal
在线阅读 下载PDF
Organic interfacial engineering of gold nanowires for selective glycerol electrooxidation
4
作者 Zhe Wang Qingling Hong +5 位作者 Boqiang Miao Tianjiao Wang Yu Ding Pujun Jin Pei Chen Yu Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期502-507,共6页
The selective electrochemical conversion of glycerol into value-added products is a green and sustainable strategy for the biomass utilization.In this work,Au nanowires(Au-NW)modified with polyethyleneimine(PEI)molecu... The selective electrochemical conversion of glycerol into value-added products is a green and sustainable strategy for the biomass utilization.In this work,Au nanowires(Au-NW)modified with polyethyleneimine(PEI)molecule(Au-NW@PEI)is obtained by an up-bottom post-modification approach.Physical characterization,molecular dynamics simulation and density functional theory demonstrate that the loose-packed PEI monolayer firmly and uniformly distribute on the Au-NW surface due to the strong Au-N interaction.Electrochemical experiments and product analysis display that PEI modification significantly enhance the electro-activity of Au-NW for the glycerol electro-oxidation reaction(GEOR)due to the electronic effect.Meanwhile,the steric hindrance and electrostatic effect of PEI layer make the optimizing adsorption of intermediates possible.Therefore,the selectivity of C3 product glyceric acid over Au-NW@PEI is increased by nearly 20%.The work thus indicates that the rational design of metal-organic interface can effectively elevate the electro-activity and selectivity of Au nanostructures,which may have wide application in biomass development. 展开更多
关键词 Glycerol electrooxidation reaction Organic interface engineering Gold-based nanomaterials ELECTROCATALYSIS SELECTIVITY
原文传递
Organic interlayer engineering of TiS_(2) for enhanced aqueous Zn ions storage
5
作者 Chengcheng Huang Yiwen Liu +7 位作者 Jing Li Zhonghao Miao Xinhao Cai Zhouxiang Wu Haoxiang Yu Lei Yan Liyuan Zhang Jie Shu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第9期135-141,共7页
Aqueous rechargeable zinc-ion batteries(ARZIBs)have a bright future for energy storage due to their high energy density and safety.However,for traditional ARZIBs,cathode materials always suffer from the limited space ... Aqueous rechargeable zinc-ion batteries(ARZIBs)have a bright future for energy storage due to their high energy density and safety.However,for traditional ARZIBs,cathode materials always suffer from the limited space for large-sized zinc ions storage and transport,leading to low Coulombic efficiency and inferior cycling performance.To build a reliable host with large tunnel,1-butyl-1-methylpyrrolidinium ion(PY14^(+))pre-intercalated TiS_(2)(PY14^(+)-TiS_(2))is designed as an alternative intercalation-type electrode.As the insertion organic vip widens the interlayer space of TiS_(2)and buffers the lattice stress generated during the electrochemical cycles,the structural reversibility,cycling stability and kinetics properties of PY14^(+)-TiS_(2) are enhanced greatly.A specific capacity of 130.9 mAh g^(−1) with 84.3%capacity retention over 500 cycles can be achieved at 0.1 A g^(−1).Therefore,this study paves the way for enhancing the aqueous Zn ions storage capability by organic interlayer engineering. 展开更多
关键词 Pre-intercalation Organic interlayer engineering TiS_(2) Intercalation-type electrode Aqueous zinc-ion batteries
原文传递
Potential of secondary aerosol formation from Chinese gasoline engine exhaust
6
作者 Zhuofei Du Min Hu +12 位作者 Jianfei Peng Song Guo Rong Zheng Jing Zheng Dongjie Shang Yanhong Qin He Niu Mengren Li Yudong Yang Sihua Lu Yusheng Wu Min Shao Shijin Shuai 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第4期348-357,共10页
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aeroso... Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. 展开更多
关键词 Port fuel injection Gasoline engine exhaust Secondary aerosol formation Chamber simulation Secondary organic aerosol
原文传递
Application of BIM + Virtual Simulation Technology in Road Engineering Construction Technology and Organization Course
7
作者 Taotao Gao Liming Zhao Jun Lin 《Journal of Contemporary Educational Research》 2023年第6期12-17,共6页
We focus on the goal of undergraduate talent training,consider the course features of Road Engineering Construction Technology and Organization,analyze the problems existing in the practical teaching of the course,use... We focus on the goal of undergraduate talent training,consider the course features of Road Engineering Construction Technology and Organization,analyze the problems existing in the practical teaching of the course,use the advantages of BIM+virtual simulation technology,design a scientific and reasonable practical teaching content of Road Engineering Construction Technology and Organization,and address the contrast between the strong practical aspect of the traditional Road Engineering Construction Technology and Organization course and the lack of practical instruments in hope to improve students’learning autonomy,enhance the quality of practical teaching,achieve the training objectives of the course,and nurture applied technical talents. 展开更多
关键词 BIM+virtual simulation technology Road Engineering Construction Technology and Organization Course content integration and implementation
在线阅读 下载PDF
A multi-axis robot-based bioprinting system supporting natural cell function preservation and cardiac tissue fabrication 被引量:8
8
作者 Zeyu Zhang Chenming Wu +7 位作者 Chengkai Dai Qingqing Shi Guoxin Fang Dongfang Xie Xiangjie Zhao Yong-Jin Liu Charlie CLWang Xiu-Jie Wang 《Bioactive Materials》 SCIE 2022年第12期138-150,共13页
Despite the recent advances in artificial tissue and organ engineering,how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine.Three-dimensional bio... Despite the recent advances in artificial tissue and organ engineering,how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine.Three-dimensional bioprinting has demonstrated its advantages as one of the major methods in fabricating simple tissues,yet it still faces difficulties to generate vasculatures and preserve cell functions in complex organ production.Here,we overcome the limitations of conventional bioprinting systems by converting a six degree-of-freedom robotic arm into a bioprinter,therefore enables cell printing on 3D complex-shaped vascular scaffolds from all directions.We also developed an oil bath-based cell printing method to better preserve cell natural functions after printing.Together with a self-designed bioreactor and a repeated print-and-culture strategy,our bioprinting system is capable to generate vascularized,contractible,and long-term survived cardiac tissues.Such bioprinting strategy mimics the in vivo organ development process and presents a promising solution for in vitro fabrication of complex organs. 展开更多
关键词 Six degree-of-freedom robot 3D bioprinting Artificial organ engineering Print-and-culture Cardiac tissue fabrication
原文传递
Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated sites in China: Advantages and challenges 被引量:1
9
作者 Yan Ma Xiaoming Du +10 位作者 Yi Shi Deyi Hou Binbin Dong Zhu Xu Huiying Li Yunfeng Xie Jidun Fang Zheng Li Yunzhe Cao Qingbao Gu Fasheng Li 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第6期17-27,共11页
In recent years, many industrial enterprises located in the urban centers of China have been relocated owing to the rapid increase in urban development. At the sites abandoned by these enterprises, volatile organic co... In recent years, many industrial enterprises located in the urban centers of China have been relocated owing to the rapid increase in urban development. At the sites abandoned by these enterprises, volatile organic compounds have frequently been detected, sometimes at high concentrations, particularly at sites abandoned by chemical manufacturing enterprises. With the redevelopment of sites and changes in land-use tvpe associated with these sites, substantial amounts of contaminated soils now require remediation. "Since China is a developing country, soil remediation warrants the usage of techniques that are suitable for addressing the unique challenges faced in this country. Land shortage is a common problem in China; the large numbers of contaminated sites, tight development schedules, and limited financial resources necessitate the development of .cost-effective methods for land reclamation.Mechanical soil aeration is a simple, effective, and low-cost soil remediation tectm^que mat is particularly suitable for the remediation of large volatile organic compound-contaminated sites. Its effectiveness has been confirmed by conducting laboratory studies, pilot tests, and full-scale projects.This study reviews current engineei-ing practice and developmental trends of mechanical soil aeration and analyzes the advantages and disadvantages of this technology for application in China as an emerging soil remediation market. The findings of this study might aid technology development in China, as well as assist other developing countries in the assessment and implementation of costeffective hazardous waste site soil remediation programs. 展开更多
关键词 Soil contamination Volatile organic compound Mechanical soil aeration Engineering practice China
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部