期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fatigue reliability assessment of turbine blade via direct probability integral method
1
作者 Guohai CHEN Pengfei GAO +1 位作者 Hui LI Dixiong YANG 《Chinese Journal of Aeronautics》 2025年第4期305-320,共16页
Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random... Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade. 展开更多
关键词 engine turbine blade Low-cycle fatigue High-cycle fatigue Fatigue reliability Direct probability integral method
原文传递
Numerical simulation of a UAV impacting engine fan blades 被引量:1
2
作者 Jingyu YU Bingjin LI +4 位作者 Jun LIU Naidan HOU Yingchun ZHANG Yafeng WANG Yulong LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第10期177-190,共14页
A 3D digital model of a small Unmanned Aerial Vehicle(UAV)is obtained by using the method of scanning reverse modeling and joint mapping.A numerical simulation of a small UAV strikes on rotary engine blades,presented ... A 3D digital model of a small Unmanned Aerial Vehicle(UAV)is obtained by using the method of scanning reverse modeling and joint mapping.A numerical simulation of a small UAV strikes on rotary engine blades,presented in this paper,was performed with a Transient Nonlinear Finite Element code PAM-CRASH software.A test of motor strike on plate was developed and the dynamic response of the plate were obtained to validate the numerical simulation method of a UAV strike on blades.Based on this,dynamic damage response caused by UAV on the engine blades were studied.It is indicated that the impact process between the UAV and a single blade can be divided into two typical stages:cutting and impact.Cutting mainly leads to the failure of the leading edge material,and impact mainly leads to the plastic deformation of the blade.At the same time,it is compared with the damage impacted by bird with the same mass.For the same mass of bird and UAV,the damage caused by UAV striking fan blade is more serious,and 1.345 kg UAV striking fan blade of typical civil aviation engine is enough to cause damage to flight safety. 展开更多
关键词 AIRWORTHINESS Bird impact engine fan blade Explicit dynamics UAV
原文传递
Numerical simulation of a rotary engine primary compressor impacted by bird 被引量:7
3
作者 Liu Jun Li Yulong 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期926-934,共9页
In order to examine the process of a rotary engine primary compressor impacted by bird, a finite element model of a bird impacted on plate is developed with the explicit code PAM-CRASH. The smooth particles hydrodynam... In order to examine the process of a rotary engine primary compressor impacted by bird, a finite element model of a bird impacted on plate is developed with the explicit code PAM-CRASH. The smooth particles hydrodynamic (SPH) method is used to simulate the bird because of the SPH method showing no signs of instability and correctly modeling the breaking-up of the bird into particles. Good agreement between the simulation results and experimental results indicates that the numerical method of bird strike used in the present paper is reasonable. Then a rotary engine primary compressor impacted by three different configurations bird named straight-ended cylinder bird, quadrangular bird, hemispherical-ended bird are investigated using the numerical simulation method. It is found that the whole process of bird strike sustained about 3.5 ms and the bird is slashed by blade during the strike. The geometry configuration of bird affected the displacement and von Mises stress of some blades severely, just because the breaking bird's mass is affected by the bird's configuration. In the event of bird striking on the site of"up"some blades may develop plastic deformation and it is very adverse for the safety work of the engine. 展开更多
关键词 Bird strike engine blade Numerical simulation PAM-CRASH SPH
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部