Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar co...Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally, some existing results are reduced immediately as special cases.展开更多
By using a new reaction model for light nuclei, the double-differential cross section of total outgoing neutron with LUNF code for n+^16O reactions at En=14.1 MeV and 18 MeV have been calculated and analyzed. In this...By using a new reaction model for light nuclei, the double-differential cross section of total outgoing neutron with LUNF code for n+^16O reactions at En=14.1 MeV and 18 MeV have been calculated and analyzed. In this paper the opened reaction channels, which have contribution to emitting the neutrons, are listed in detail. To improve the fitting results the direct inelastic scattering mechanism is involved. The calculating results agree fairly well with the experimental data at E,~ = 14.1 MeV and the deviation from calculated results and experimental data in low energy region at En= 18 MeV has been analyzed. Since the possibility of 5He has been affirmed theoretically [J.S. Zhang, Sci. Chin. G 47 (2004) 137], so 5He emission from n+ ^16O reaction is taken into account, which plays an important role at the region of the outgoing neutron energy εn〈3 MeV in total outgoing neutron energy-angular spectrum. The calculated results indicate that the pre-equilibrium mechanism dominates the whole reaction processes, and the recoil effect in light nuclear reactions is essentially important.展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.10072024 and 10472041)
文摘Through a comparison between the expressions of master balance laws and the conservation laws derived by Noether's theorem, a unified master balance law and six physically possible balance equations for micropolar continuum mechanics are naturally deduced. Among them, by extending the well-known conventional concept of energymomentum tensor, the rather general conservation laws and balance equations named after energy-momentum, energy-angular momentum and energy-energy are obtained. It is clear that the forms of the physical field quantities in the master balance law for the last three cases could not be assumed directly by perceiving through the intuition. Finally, some existing results are reduced immediately as special cases.
文摘By using a new reaction model for light nuclei, the double-differential cross section of total outgoing neutron with LUNF code for n+^16O reactions at En=14.1 MeV and 18 MeV have been calculated and analyzed. In this paper the opened reaction channels, which have contribution to emitting the neutrons, are listed in detail. To improve the fitting results the direct inelastic scattering mechanism is involved. The calculating results agree fairly well with the experimental data at E,~ = 14.1 MeV and the deviation from calculated results and experimental data in low energy region at En= 18 MeV has been analyzed. Since the possibility of 5He has been affirmed theoretically [J.S. Zhang, Sci. Chin. G 47 (2004) 137], so 5He emission from n+ ^16O reaction is taken into account, which plays an important role at the region of the outgoing neutron energy εn〈3 MeV in total outgoing neutron energy-angular spectrum. The calculated results indicate that the pre-equilibrium mechanism dominates the whole reaction processes, and the recoil effect in light nuclear reactions is essentially important.