In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorith...In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.展开更多
With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid elec...With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.展开更多
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder r...Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.展开更多
Modular Solar-Powered Aircraft(M-SPA)is a kind of High-Altitude Long-Endurance(HALE)aircraft which exploits the mission advantage of swarm UAV and the HALE advantage of large aspect-ratio SPA.M-SPA’s separated mode a...Modular Solar-Powered Aircraft(M-SPA)is a kind of High-Altitude Long-Endurance(HALE)aircraft which exploits the mission advantage of swarm UAV and the HALE advantage of large aspect-ratio SPA.M-SPA’s separated mode and combined mode give it the potential to maximize the mission efficiency with limited solar energy.In this paper,firstly,oriented by the mission of maximizing the cruise area,the overall design of the M-SPA is modeled,including the energy model,the aerodynamic model and the flight environment settings.Secondly,by analyzing the energy consumption of the flight modes,we design a multi-phase flight mission strategy.Then,a 24-hour three-dimensional(3D)flight profile of the M-SPA is optimized,including the sub-SPA cooperative path planning in the separation mode.Finally,inspired by the Traveling Salesman Problem(TSP),an improved Ant Colony Algorithm(ACA)is exploited to find the optimal path for each sub-SPA,which is further developed into a dynamic separation and combination scheme for the M-SPA.The simulation results show that the mission performance of the M-SPA outperforms that of the conventional SPA,and explicitly,the mission coverage of the M-SPA is slightly less than a linear increase under comparable simulation conditions.展开更多
The control objective and several key parameters of PEMFC hybrid system are analyzed. Control strategy design and energy optimization simulation are made individually for given cycle case and realtime operating case. ...The control objective and several key parameters of PEMFC hybrid system are analyzed. Control strategy design and energy optimization simulation are made individually for given cycle case and realtime operating case. For the given cycle case, genetic algorithm is adopted to solve the multi-constraint combinatorial optimization problem. Simulation result showed the algorithm's feasibility. As far as the realtime operation is concerned, based on the original fuzzy control strategy, the fuel cell voltage and voltage variance parameters are introduced to apply result reveals that the improved fuzzy control strategy can enhance the two-level modification on the fuzzy control output. The fuel cell efficiency and reduce the power fluctuations.展开更多
The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating te...The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating temperature increases the mass transfer coefficient and increases the mass transfer rate. Theoretical and experimental data show that sulfur removal in 4.5 W magnetic field is desirable. The increase in sulfur removal percentage in the magnetic field of 4.5 W and 6.75 W is about 16.4% and 15.2%, respectively. According to the obtained results, the effect of temperature increase from 18.8°C to 23.4°C is more evident than the effect of temperature change from 23.4°C to 32.2°C. Because more thermal energy is needed to provide higher temperatures. Therefore, the temperature of 23.4°C is reported as the optimal temperature. The results of this research show that the percentage of sulfur removal is also high at this temperature.展开更多
The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACT...The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.展开更多
Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device ...Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.展开更多
At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown ...At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.展开更多
This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation.The proposed strategy accounts for renewable generation costs,mainte...This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation.The proposed strategy accounts for renewable generation costs,maintenance and operating expenses of energy storage systems,diesel generator operational costs,typical daily load profiles,and power balance constraints.A penalty term for power backflow is incorporated into the objective function to discourage undesirable reverse flows.The Bald Eagle Search(BES)meta-heuristic is adopted to solve the resulting constrained optimization problem.Numerical simulations under multiple load scenarios demonstrate that the proposed method effectively reduces operating cost while preventing power backflow and maintaining secure operation of the distribution network.展开更多
Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operat...Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.展开更多
Quadruped robots with body joints exhibit enhanced mobility,however,in outdoor environments,the energy that the robot can carry is limited,necessitating optimization of energy consumption to accomplish more tasks with...Quadruped robots with body joints exhibit enhanced mobility,however,in outdoor environments,the energy that the robot can carry is limited,necessitating optimization of energy consumption to accomplish more tasks within these constraints.Inspired by quadruped animals,this paper proposes an energy-saving strategy for a body joint quadruped robot based on Central Pattern Generator(CPG)with multi-sensor fusion bio-reflexes.First,an energy consumption model for the robot is established,and energy characteristic tests are conducted under different gait parameters.Based on these energy characteristics,optimal energy-efficient gait parameters are determined for various environmental conditions.Second,biological reflex mechanisms are studied,and a motion control model based on multi-sensor fusion biological reflexes is established using CPG as the foundation.By integrating the reflex model and gait parameters,real-time adaptive adjustments to the robot’s motion gait are achieved on complex terrains,reducing energy loss caused by terrain disturbances.Finally,a prototype of the body joint quadruped robot is built for experimental verification.Simulation and experimental results demonstrate that the proposed algorithm effectively reduces the robot’s Cost of Transport(COT)and significantly improves energy efficiency.The related research results can provide a useful reference for the research on energy efficiency of quadruped robots on complex terrain.展开更多
Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we pr...Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.展开更多
As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,fo...As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,for instance,limited processing capability,a few energy sources,and erratic availability being some of the common ones.Correspondingly,these problems require an effective task allocation algorithmto optimize the resources through continued high system performance and dependability in dynamic environments.This paper proposes an improved Particle Swarm Optimization technique,known as IPSO,for multi-objective optimization in edge computing to overcome these issues.To this end,the IPSO algorithm tries to make a trade-off between two important objectives,which are energy consumption minimization and task execution time reduction.Because of global optimal position mutation and dynamic adjustment to inertia weight,the proposed optimization algorithm can effectively distribute tasks among edge nodes.As a result,it reduces the execution time of tasks and energy consumption.In comparative assessments carried out by IPSO with benchmark methods such as Energy-aware Double-fitness Particle Swarm Optimization(EADPSO)and ICBA,IPSO provides better results than these algorithms.For the maximum task size,when compared with the benchmark methods,IPSO reduces the execution time by 17.1%and energy consumption by 31.58%.These results allow the conclusion that IPSO is an efficient and scalable technique for task allocation at the edge environment.It provides peak efficiency while handling scarce resources and variable workloads.展开更多
In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need t...In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need to go beyond traditional heat integration and water recycling techniques. Thus,we propose a strategy based on mathe-matical programming techniques to model and optimize the structure of the processes,and perform heat integration including the use of multi-effect distillation columns and integrated water networks to show that the energy effi-ciency and water consumption in bioethanol plants can be significantly improved. Specifically,under some circum-stances energy can even be produced and the water consumption can be reduced below the values required for the production of gasoline.展开更多
In an integrated iron and steel plant with a cogeneration system, recycled energy is continuously transported into the cogeneration system and the electricity is continuously generated, and both of them could not be s...In an integrated iron and steel plant with a cogeneration system, recycled energy is continuously transported into the cogeneration system and the electricity is continuously generated, and both of them could not be stored for a long time. Moreover, thegeneration and consumption of electricity is irregular, which may bring about more unexpected imbalances. Therefore, it is a crucial issue to schedule the entire energy system by optimizing the operation of energy utilization, which includes the raw energy in the production system, the generation electricity in the cogeneration system and the recycled energy in these two systems. In this paper, an improved Linear Programming model for energy optimization in the integrated iron and steel plant with a cogeneration system is established. The improved model focuses on controlling the whole energy flow and scheduling the whole energy consumption in the entire energy system between the production system and cogeneration system through optimizing all kinds of energy distribution and utilization in an integrated iron and steel plant with a cogeneration system. Case study shows that the improved model offers the optimal operation conditions at the higher energy utilization, lower energy cost and lower pollution emissions.展开更多
Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also ...Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also cause privacy leakage and energy consumption.How to optimize the energy consumption in distributed communication systems,while ensuring the privacy of users and model accuracy,has become an urgent challenge.In this paper,we define the FL as a 3-layer architecture including users,agents and server.In order to find a balance among model training accuracy,privacy-preserving effect,and energy consumption,we design the training process of FL as game models.We use an extensive game tree to analyze the key elements that influence the players’decisions in the single game,and then find the incentive mechanism that meet the social norms through the repeated game.The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality,and the proposed incentive mechanism can also promote users to submit high-quality data in FL.Following the multiple rounds of play,the incentive mechanism can help all players find the optimal strategies for energy,privacy,and accuracy of FL in distributed communication systems.展开更多
There are already several power models to estimate the power consumption of base stations at system level. However, there is so far no model that can predict power consumption of the future base station designs based ...There are already several power models to estimate the power consumption of base stations at system level. However, there is so far no model that can predict power consumption of the future base station designs based on algorithms and hardware selections with insufficient physical information. We present such an energy model for typical base stations. This model can help designers in estimating, evaluating and optimizing energy/power consumption of candidate designs in early design stages. The proposed model is verified by an LTE extreme scenario. The estimated results show that digital front-end, channel equalization and channel decoding are three major power greedy modules(consuming 39.4%, 16.3%, 13.4%) in a digital baseband subsystem. The power estimation error of the proposed power amplifier(PA) power model is 3.5%(macro cell). The major contribution of this paper is that the proposed models can rapidly estimate energy/power consumption of 4G and the future base stations(such as 5G) in early design stages with well acceptable precision, even without sufficient implementation information.展开更多
An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designe...An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms according to the energy of the swarm and is used in the optimization strategy for parameter identification and operation condition optimization. The run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, used in the operation condition optimization of the next run, are adjusted by calculating time-series data obtained from real fed-batch process in the run-to-run optimization. The simulation results show that the strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively. Run-to-run strategy with SEC-PSO provides an effective method for optimization of fed-batch fermentation process.展开更多
Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to...Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach.展开更多
基金funded by National Natural Science Foundation of China(No.61741303)Guangxi Natural Science Foundation(No.2017GXNSFAA198161)the Foundation Project of Guangxi Key Laboratory of Spatial Information and Mapping(No.21-238-21-16).
文摘In large-scaleWireless Rechargeable SensorNetworks(WRSN),traditional forward routingmechanisms often lead to reduced energy efficiency.To address this issue,this paper proposes a WRSN node energy optimization algorithm based on regional partitioning and inter-layer routing.The algorithm employs a dynamic clustering radius method and the K-means clustering algorithm to dynamically partition the WRSN area.Then,the cluster head nodes in the outermost layer select an appropriate layer from the next relay routing region and designate it as the relay layer for data transmission.Relay nodes are selected layer by layer,starting from the outermost cluster heads.Finally,the inter-layer routing mechanism is integrated with regional partitioning and clustering methods to develop the WRSN energy optimization algorithm.To further optimize the algorithm’s performance,we conduct parameter optimization experiments on the relay routing selection function,cluster head rotation energy threshold,and inter-layer relay structure selection,ensuring the best configurations for energy efficiency and network lifespan.Based on these optimizations,simulation results demonstrate that the proposed algorithm outperforms traditional forward routing,K-CHRA,and K-CLP algorithms in terms of node mortality rate and energy consumption,extending the number of rounds to 50%node death by 11.9%,19.3%,and 8.3%in a 500-node network,respectively.
文摘With the development of fast communication technology between ego vehicle and other traffic participants,and automated driving technology,there is a big potential in the improvement of energy efficiency of hybrid electric vehicles(HEVs).Moreover,the terrain along the driving route is a non-ignorable factor for energy efficiency of HEV running on the hilly streets.This paper proposes a look-ahead horizon-based optimal energy management strategy to jointly improve the efficiencies of powertrain and vehicle for connected and automated HEVs on the road with slope.Firstly,a rule-based framework is developed to guarantee the success of automated driving in the traffic scenario.Then a constrained optimal control problem is formulated to minimize the fuel consumption and the electricity consumption under the satisfaction of inter-vehicular distance constraint between ego vehicle and preceding vehicle.Both speed planning and torque split of hybrid powertrain are provided by the proposed approach.Moreover,the preceding vehicle speed in the look-ahead horizon is predicted by extreme learning machine with real-time data obtained from communication of vehicle-to-everything.The optimal solution is derived through the Pontryagin’s maximum principle.Finally,to verify the effectiveness of the proposed algorithm,a traffic-in-the-loop powertrain platform with data from real world traffic environment is built.It is found that the fuel economy for the proposed energy management strategy improves in average 17.0%in scenarios of different traffic densities,compared to the energy management strategy without prediction of preceding vehicle speed.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant No. 61174047) and the Fundamental Research Funds for the Central Universities (HEUCF041406).
文摘Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states.
基金supported by the National Natural Science Foundation of China(Nos.61901448,61871401,12002340).
文摘Modular Solar-Powered Aircraft(M-SPA)is a kind of High-Altitude Long-Endurance(HALE)aircraft which exploits the mission advantage of swarm UAV and the HALE advantage of large aspect-ratio SPA.M-SPA’s separated mode and combined mode give it the potential to maximize the mission efficiency with limited solar energy.In this paper,firstly,oriented by the mission of maximizing the cruise area,the overall design of the M-SPA is modeled,including the energy model,the aerodynamic model and the flight environment settings.Secondly,by analyzing the energy consumption of the flight modes,we design a multi-phase flight mission strategy.Then,a 24-hour three-dimensional(3D)flight profile of the M-SPA is optimized,including the sub-SPA cooperative path planning in the separation mode.Finally,inspired by the Traveling Salesman Problem(TSP),an improved Ant Colony Algorithm(ACA)is exploited to find the optimal path for each sub-SPA,which is further developed into a dynamic separation and combination scheme for the M-SPA.The simulation results show that the mission performance of the M-SPA outperforms that of the conventional SPA,and explicitly,the mission coverage of the M-SPA is slightly less than a linear increase under comparable simulation conditions.
基金Project (No. 2003AA517020) supported by the Hi-Tech Researchand Development Program (863) of China
文摘The control objective and several key parameters of PEMFC hybrid system are analyzed. Control strategy design and energy optimization simulation are made individually for given cycle case and realtime operating case. For the given cycle case, genetic algorithm is adopted to solve the multi-constraint combinatorial optimization problem. Simulation result showed the algorithm's feasibility. As far as the realtime operation is concerned, based on the original fuzzy control strategy, the fuel cell voltage and voltage variance parameters are introduced to apply result reveals that the improved fuzzy control strategy can enhance the two-level modification on the fuzzy control output. The fuel cell efficiency and reduce the power fluctuations.
文摘The sour gas sweetening is one of the main processes in gas industries. Gas sweetening is done through chemical processes. Therefore, it requires high cost and energy. The results show that increasing the operating temperature increases the mass transfer coefficient and increases the mass transfer rate. Theoretical and experimental data show that sulfur removal in 4.5 W magnetic field is desirable. The increase in sulfur removal percentage in the magnetic field of 4.5 W and 6.75 W is about 16.4% and 15.2%, respectively. According to the obtained results, the effect of temperature increase from 18.8°C to 23.4°C is more evident than the effect of temperature change from 23.4°C to 32.2°C. Because more thermal energy is needed to provide higher temperatures. Therefore, the temperature of 23.4°C is reported as the optimal temperature. The results of this research show that the percentage of sulfur removal is also high at this temperature.
文摘The Sine and Wormhole Energy Whale Optimization Algorithm(SWEWOA)represents an advanced solution method for resolving Optimal Power Flow(OPF)problems in power systems equipped with Flexible AC Transmission System(FACTS)devices which include Thyristor-Controlled Series Compensator(TCSC),Thyristor-Controlled Phase Shifter(TCPS),and Static Var Compensator(SVC).SWEWOA expands Whale Optimization Algorithm(WOA)through the integration of sine and wormhole energy features thus improving exploration and exploitation capabilities for efficient convergence in complex non-linear OPF problems.A performance evaluation of SWEWOA takes place on the IEEE-30 bus test system through static and dynamic loading scenarios where it demonstrates better results than five contemporary algorithms:Adaptive Chaotic WOA(ACWOA),WOA,Chaotic WOA(CWOA),Sine Cosine Algorithm Differential Evolution(SCADE),and Hybrid Grey Wolf Optimization(HGWO).The research shows that SWEWOA delivers superior generation cost reduction than other algorithms by reaching a minimum of 0.9%better performance.SWEWOA demonstrates superior power loss performance by achieving(P_(loss,min))at the lowest level compared to all other tested algorithms which leads to better system energy efficiency.The dynamic loading performance of SWEWOA leads to a 4.38%reduction in gross costs which proves its capability to handle different operating conditions.The algorithm achieves top performance in Friedman Rank Test(FRT)assessments through multiple performance metrics which verifies its consistent reliability and strong stability during changing power demands.The repeated simulations show that SWEWOA generates mean costs(C_(gen,min))and mean power loss values(P_(loss,min))with small deviations which indicate its capability to maintain cost-effective solutions in each simulation run.SWEWOA demonstrates great potential as an advanced optimization solution for power system operations through the results presented in this study.
基金supported by the Changzhou Science and Technology Support Project(CE20235045)Open Subject of Jiangsu Province Key Laboratory of Power Transmission and Distribution(2021JSSPD12)+1 种基金Talent Projects of Jiangsu University of Technology(KYY20018)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633).
文摘Energy storage power plants are critical in balancing power supply and demand.However,the scheduling of these plants faces significant challenges,including high network transmission costs and inefficient inter-device energy utilization.To tackle these challenges,this study proposes an optimal scheduling model for energy storage power plants based on edge computing and the improved whale optimization algorithm(IWOA).The proposed model designs an edge computing framework,transferring a large share of data processing and storage tasks to the network edge.This architecture effectively reduces transmission costs by minimizing data travel time.In addition,the model considers demand response strategies and builds an objective function based on the minimization of the sum of electricity purchase cost and operation cost.The IWOA enhances the optimization process by utilizing adaptive weight adjustments and an optimal neighborhood perturbation strategy,preventing the algorithm from converging to suboptimal solutions.Experimental results demonstrate that the proposed scheduling model maximizes the flexibility of the energy storage plant,facilitating efficient charging and discharging.It successfully achieves peak shaving and valley filling for both electrical and heat loads,promoting the effective utilization of renewable energy sources.The edge-computing framework significantly reduces transmission delays between energy devices.Furthermore,IWOA outperforms traditional algorithms in optimizing the objective function.
文摘At present,energy consumption is one of the main bottlenecks in autonomous mobile robot development.To address the challenge of high energy consumption in path planning for autonomous mobile robots navigating unknown and complex environments,this paper proposes an Attention-Enhanced Dueling Deep Q-Network(ADDueling DQN),which integrates a multi-head attention mechanism and a prioritized experience replay strategy into a Dueling-DQN reinforcement learning framework.A multi-objective reward function,centered on energy efficiency,is designed to comprehensively consider path length,terrain slope,motion smoothness,and obstacle avoidance,enabling optimal low-energy trajectory generation in 3D space from the source.The incorporation of a multihead attention mechanism allows the model to dynamically focus on energy-critical state features—such as slope gradients and obstacle density—thereby significantly improving its ability to recognize and avoid energy-intensive paths.Additionally,the prioritized experience replay mechanism accelerates learning from key decision-making experiences,suppressing inefficient exploration and guiding the policy toward low-energy solutions more rapidly.The effectiveness of the proposed path planning algorithm is validated through simulation experiments conducted in multiple off-road scenarios.Results demonstrate that AD-Dueling DQN consistently achieves the lowest average energy consumption across all tested environments.Moreover,the proposed method exhibits faster convergence and greater training stability compared to baseline algorithms,highlighting its global optimization capability under energy-aware objectives in complex terrains.This study offers an efficient and scalable intelligent control strategy for the development of energy-conscious autonomous navigation systems.
基金the Science and Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.(Project No.J2024066).
文摘This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation.The proposed strategy accounts for renewable generation costs,maintenance and operating expenses of energy storage systems,diesel generator operational costs,typical daily load profiles,and power balance constraints.A penalty term for power backflow is incorporated into the objective function to discourage undesirable reverse flows.The Bald Eagle Search(BES)meta-heuristic is adopted to solve the resulting constrained optimization problem.Numerical simulations under multiple load scenarios demonstrate that the proposed method effectively reduces operating cost while preventing power backflow and maintaining secure operation of the distribution network.
基金supported by the National Natural Science Foundation of China(Grant.No.31901400)the Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant.No.2023YW09).
文摘Persistent low temperatures in autumn and winter have a huge impact on crops,and greenhouses rely on solar radiation and heating equipment to meet the required indoor temperature.But the energy cost of frequent operation of the actuators is exceptionally high.The relationship between greenhouse environmental control accuracy and energy consumption is one of the key issues faced in greenhouse research.In this study,a non-linear model predictive control method with an improved objective function was proposed.The improved objective function used tolerance intervals and boundary constraints to optimize the objective evaluation.The nonlinear model predictive control(NMPC)controller design was based on the wavelet neural network(WNN)data-driven model and applied the interior point method to solve the optimal solution of the objective function control,thus balancing the contradiction between energy consumption and control precision.The simulation results showed that the improved NMPC method reduced energy consumption by 21.02%and 9.54%compared with the model predictive control and regular NMPC,which proved the method achieved good results in a low-temperature environment.This research can provide an important reference for the field as it offers a more efficient approach to managing greenhouse climates,potentially leading to substantial energy savings and enhanced sustainability in agricultural practices.
基金supported by the National Natural Science Foundation of China(Grant no.52075488)the Natural Science Foundation of Zhejiang Province(LY20E050023).
文摘Quadruped robots with body joints exhibit enhanced mobility,however,in outdoor environments,the energy that the robot can carry is limited,necessitating optimization of energy consumption to accomplish more tasks within these constraints.Inspired by quadruped animals,this paper proposes an energy-saving strategy for a body joint quadruped robot based on Central Pattern Generator(CPG)with multi-sensor fusion bio-reflexes.First,an energy consumption model for the robot is established,and energy characteristic tests are conducted under different gait parameters.Based on these energy characteristics,optimal energy-efficient gait parameters are determined for various environmental conditions.Second,biological reflex mechanisms are studied,and a motion control model based on multi-sensor fusion biological reflexes is established using CPG as the foundation.By integrating the reflex model and gait parameters,real-time adaptive adjustments to the robot’s motion gait are achieved on complex terrains,reducing energy loss caused by terrain disturbances.Finally,a prototype of the body joint quadruped robot is built for experimental verification.Simulation and experimental results demonstrate that the proposed algorithm effectively reduces the robot’s Cost of Transport(COT)and significantly improves energy efficiency.The related research results can provide a useful reference for the research on energy efficiency of quadruped robots on complex terrain.
基金supported in part by the National Key Research and Development Program of China(2024YFB4709100,2021YFE0206100)the National Natural Science Foundation of China(62073321)+1 种基金the National Defense Basic Scientific Research Program(JCKY2019203C029)the Science and Technology Development Fund,Macao SAR,China(0015/2020/AMJ)
文摘Learning-based methods have become mainstream for solving residential energy scheduling problems. In order to improve the learning efficiency of existing methods and increase the utilization of renewable energy, we propose the Dyna actiondependent heuristic dynamic programming(Dyna-ADHDP)method, which incorporates the ideas of learning and planning from the Dyna framework in action-dependent heuristic dynamic programming. This method defines a continuous action space for precise control of an energy storage system and allows online optimization of algorithm performance during the real-time operation of the residential energy model. Meanwhile, the target network is introduced during the training process to make the training smoother and more efficient. We conducted experimental comparisons with the benchmark method using simulated and real data to verify its applicability and performance. The results confirm the method's excellent performance and generalization capabilities, as well as its excellence in increasing renewable energy utilization and extending equipment life.
基金supported by the University Putra Malaysia and the Ministry of Higher Education Malaysia under grantNumber:(FRGS/1/2023/ICT11/UPM/02/3).
文摘As mobile edge computing continues to develop,the demand for resource-intensive applications is steadily increasing,placing a significant strain on edge nodes.These nodes are normally subject to various constraints,for instance,limited processing capability,a few energy sources,and erratic availability being some of the common ones.Correspondingly,these problems require an effective task allocation algorithmto optimize the resources through continued high system performance and dependability in dynamic environments.This paper proposes an improved Particle Swarm Optimization technique,known as IPSO,for multi-objective optimization in edge computing to overcome these issues.To this end,the IPSO algorithm tries to make a trade-off between two important objectives,which are energy consumption minimization and task execution time reduction.Because of global optimal position mutation and dynamic adjustment to inertia weight,the proposed optimization algorithm can effectively distribute tasks among edge nodes.As a result,it reduces the execution time of tasks and energy consumption.In comparative assessments carried out by IPSO with benchmark methods such as Energy-aware Double-fitness Particle Swarm Optimization(EADPSO)and ICBA,IPSO provides better results than these algorithms.For the maximum task size,when compared with the benchmark methods,IPSO reduces the execution time by 17.1%and energy consumption by 31.58%.These results allow the conclusion that IPSO is an efficient and scalable technique for task allocation at the edge environment.It provides peak efficiency while handling scarce resources and variable workloads.
基金the Center for Advanced Process Decision-making at Carnegie Mellon University and NSF Grant CBET096654
文摘In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive,there is a need to go beyond traditional heat integration and water recycling techniques. Thus,we propose a strategy based on mathe-matical programming techniques to model and optimize the structure of the processes,and perform heat integration including the use of multi-effect distillation columns and integrated water networks to show that the energy effi-ciency and water consumption in bioethanol plants can be significantly improved. Specifically,under some circum-stances energy can even be produced and the water consumption can be reduced below the values required for the production of gasoline.
基金We are very grateful to the editor and the referees for their valuable comments and suggestions. This research is supported by National Natural Science Foundation of China (NSFC) (Nos. 71131002, 71521001, 71501055, 71401048, 71573071 and 71571060).
文摘In an integrated iron and steel plant with a cogeneration system, recycled energy is continuously transported into the cogeneration system and the electricity is continuously generated, and both of them could not be stored for a long time. Moreover, thegeneration and consumption of electricity is irregular, which may bring about more unexpected imbalances. Therefore, it is a crucial issue to schedule the entire energy system by optimizing the operation of energy utilization, which includes the raw energy in the production system, the generation electricity in the cogeneration system and the recycled energy in these two systems. In this paper, an improved Linear Programming model for energy optimization in the integrated iron and steel plant with a cogeneration system is established. The improved model focuses on controlling the whole energy flow and scheduling the whole energy consumption in the entire energy system between the production system and cogeneration system through optimizing all kinds of energy distribution and utilization in an integrated iron and steel plant with a cogeneration system. Case study shows that the improved model offers the optimal operation conditions at the higher energy utilization, lower energy cost and lower pollution emissions.
基金sponsored by the National Key R&D Program of China(No.2018YFB2100400)the National Natural Science Foundation of China(No.62002077,61872100)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(92167203)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110385)the China Postdoctoral Science Foundation(No.2022M710860)the Zhejiang Lab(No.2020NF0AB01)Guangzhou Science and Technology Plan Project(202102010440).
文摘Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also cause privacy leakage and energy consumption.How to optimize the energy consumption in distributed communication systems,while ensuring the privacy of users and model accuracy,has become an urgent challenge.In this paper,we define the FL as a 3-layer architecture including users,agents and server.In order to find a balance among model training accuracy,privacy-preserving effect,and energy consumption,we design the training process of FL as game models.We use an extensive game tree to analyze the key elements that influence the players’decisions in the single game,and then find the incentive mechanism that meet the social norms through the repeated game.The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality,and the proposed incentive mechanism can also promote users to submit high-quality data in FL.Following the multiple rounds of play,the incentive mechanism can help all players find the optimal strategies for energy,privacy,and accuracy of FL in distributed communication systems.
基金supporting from National High Technical Research and Development Program of China (863 program) 2014AA01A705
文摘There are already several power models to estimate the power consumption of base stations at system level. However, there is so far no model that can predict power consumption of the future base station designs based on algorithms and hardware selections with insufficient physical information. We present such an energy model for typical base stations. This model can help designers in estimating, evaluating and optimizing energy/power consumption of candidate designs in early design stages. The proposed model is verified by an LTE extreme scenario. The estimated results show that digital front-end, channel equalization and channel decoding are three major power greedy modules(consuming 39.4%, 16.3%, 13.4%) in a digital baseband subsystem. The power estimation error of the proposed power amplifier(PA) power model is 3.5%(macro cell). The major contribution of this paper is that the proposed models can rapidly estimate energy/power consumption of 4G and the future base stations(such as 5G) in early design stages with well acceptable precision, even without sufficient implementation information.
基金Supported by the National Natural Science Foundation of China (20676013)
文摘An iterative optimization strategy for fed-batch fermentation process is presented by combining a run-to-run optimization with swarm energy conservation particle swarm optimization (SEC-PSO). SEC-PSO, which is designed with the concept of energy conservation, can solve the problem of premature convergence frequently appeared in standard PSO algorithm by partitioning its population into several sub-swarms according to the energy of the swarm and is used in the optimization strategy for parameter identification and operation condition optimization. The run-to-run optimization exploits the repetitive nature of fed-batch processes in order to deal with the optimal problems of fed-batch fermentation process with inaccurate process model and unsteady process state. The kinetic model parameters, used in the operation condition optimization of the next run, are adjusted by calculating time-series data obtained from real fed-batch process in the run-to-run optimization. The simulation results show that the strategy can adjust its kinetic model dynamically and overcome the instability of fed-batch process effectively. Run-to-run strategy with SEC-PSO provides an effective method for optimization of fed-batch fermentation process.
基金supported by the National Basic Research Pro-gram of China (2011CB610304)the National Science & Technology Major Project (2009ZX04014-034)the ResearchFund for the Doctoral Program of Higher Education of China (20090041110023)
文摘Converting ambient vibration energy into electrical energy by using piezoelectric energy harvester has attracted a lot of interest in the past few years.In this paper,a topology optimization based method is applied to simultaneously determine the optimal layout of the piezoelectric energy harvesting devices and the optimal position of the mass loading.The objective function is to maximize the energy harvesting performance over a range of vibration frequencies.Pseudo excitation method (PEM) is adopted to analyze structural stationary random responses,and sensitivity analysis is then performed by using the adjoint method.Numerical examples are presented to demonstrate the validity of the proposed approach.