With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a v...With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.展开更多
End-use electrical loads in residential and commercial buildings are evolving into flexible and cost-effective resources to improve electric grid reliability,reduce costs,and support increased hosting of distributed r...End-use electrical loads in residential and commercial buildings are evolving into flexible and cost-effective resources to improve electric grid reliability,reduce costs,and support increased hosting of distributed renewable generation.This article reviews the simulation of utility services delivered by buildings for the purpose of electric grid operational modeling.We consider services delivered to(1)the high-voitage bulk power system through the coordinated action of many,distributed building loads working together,and(2)targeted support provided to the operation of low-voltage electric distribution grids.Although an exhaustive exploration is not possible,we emphasize the ancillary services and voltage management buildings can provide and summarize the gaps in our ability to simulate them with traditional building energy modeling(BEM)tools,suggesting pathways for future research and development.展开更多
Due to heavy energy consumption and low technical efficiency, China's iron and steel industry is trapped in the dilemma "large but not strong". This situation not only exerts enormous pressure on energy security bu...Due to heavy energy consumption and low technical efficiency, China's iron and steel industry is trapped in the dilemma "large but not strong". This situation not only exerts enormous pressure on energy security but also on increased carbon emission and environmental pollution. The contribution of this study is to calculate the energy and environment efficiency of China's iron and steel industry and to analyze the factors affecting this efficiency. An index of energy and environment efficiency is introduced based on Directional Slacks-based Distance Measure Model. This index is adopted to measure the energy and environment efficiency of China's iron and steel industry using 2,382 firm observations during 2001 to 2005. In addition, Hierarchy Linear Model (HLM) is applied to analyze the factors which can influence the efficiency with both firm-level and province-level data. The conclusions are as follows: The energy and environment efficiency of China's iron and steel industry did not have a significant change during the research period. A firm's age, size, ownership, product category and the economy of its province have significant influence on its energy and environment efficiency.展开更多
基金supported by NSFC under grant No. 61322111 and No. 61401249the National Basic Research Program of China (973 Program) No. 2013CB336600+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No. 20130002120001Chuanxin Funding, and Beijing nova program No.Z121101002512051
文摘With the explosive growth and need for high-speed wireless communications, more and more energy is consumed to support the required quality of service. Therefore, energy efficient or green communication has become a very hot topic under the ground of limited energy resource and environmentally friendly transmission schemes. MIMO technique is capable of reducing the transmission power thanks to its diversity and multiplexing gain. Moreover, antenna selection(AS) is an alternative to extract many of the benefits in MIMO systems with a reduced cost of complexity and power. Although many works including several survey papers have investigated AS in MIMO systems, the goal of these works is only the capacity maximization or error rate minimization, which fails to guarantee the optimality of the energy efficiency in MIMO systems. In this paper, we overview the state of the art in the AS schemes in energy efficient MIMO systems, the goal of which is to optimize the energy efficiency of the whole system. Specifically, we introduce energy efficient AS in point-to-point MIMO, cooperative MIMO, multiuser MIMO and largescale MIMO systems, respectively. Several challenging and practical issues in this area are also addressed.
基金This work was authored in part by the National Renewable Energy Laboratory,operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308Funding provided by the National Renewable Energy Laboratory(NREL)Laboratory Directed Research and Development(LDRD)program.
文摘End-use electrical loads in residential and commercial buildings are evolving into flexible and cost-effective resources to improve electric grid reliability,reduce costs,and support increased hosting of distributed renewable generation.This article reviews the simulation of utility services delivered by buildings for the purpose of electric grid operational modeling.We consider services delivered to(1)the high-voitage bulk power system through the coordinated action of many,distributed building loads working together,and(2)targeted support provided to the operation of low-voltage electric distribution grids.Although an exhaustive exploration is not possible,we emphasize the ancillary services and voltage management buildings can provide and summarize the gaps in our ability to simulate them with traditional building energy modeling(BEM)tools,suggesting pathways for future research and development.
文摘Due to heavy energy consumption and low technical efficiency, China's iron and steel industry is trapped in the dilemma "large but not strong". This situation not only exerts enormous pressure on energy security but also on increased carbon emission and environmental pollution. The contribution of this study is to calculate the energy and environment efficiency of China's iron and steel industry and to analyze the factors affecting this efficiency. An index of energy and environment efficiency is introduced based on Directional Slacks-based Distance Measure Model. This index is adopted to measure the energy and environment efficiency of China's iron and steel industry using 2,382 firm observations during 2001 to 2005. In addition, Hierarchy Linear Model (HLM) is applied to analyze the factors which can influence the efficiency with both firm-level and province-level data. The conclusions are as follows: The energy and environment efficiency of China's iron and steel industry did not have a significant change during the research period. A firm's age, size, ownership, product category and the economy of its province have significant influence on its energy and environment efficiency.