Phosphorylation is one of the major posttranslational modifications to control plant growth and development.Opaque2(O2)represents a central hub for endosperm filling,which largely determines seed yield and nutrient st...Phosphorylation is one of the major posttranslational modifications to control plant growth and development.Opaque2(O2)represents a central hub for endosperm filling,which largely determines seed yield and nutrient storage in maize.However,it still remains unclear how O2 phosphorylation orchestrates endosperm filling and nutrient quality.Here,we systematically identified the phosphorylation sites of O2 during endosperm filling.A total of 18 phosphorylation sites were found in O2 and five sites were identified to apparently modulate its subcellular localization and transactivation capacity.In addition,a conserved protein kinase CK1 was confirmed to interact with and phosphorylate O2 at the residue Threonine(T)202 to promote O2-mediated transactivation and protein stability.Overexpression of CK1 resulted in increased kernel size,100-kernel weight and nutrient storage.Phosphorylation-mimic O2 seeds at T202 exhibited enhanced kernel dimension,test weight,vitreous endosperm area and nutrient accumulation,whereas the phosphorylation-deficient O2 seeds did not.Collectively,this study establishes a comprehensive phosphocode atlas of O2 during endosperm filling and highlights the importance of phosphorylation modification in O2 to precisely orchestrate maize yield and nutrient quality.展开更多
Inferior grains exhibit delayed developmental processes and reduced metabolic activities compared to superior grains,leading to unstable rice yield and quality.While significant advancements have been achieved in eluc...Inferior grains exhibit delayed developmental processes and reduced metabolic activities compared to superior grains,leading to unstable rice yield and quality.While significant advancements have been achieved in elucidating the physiology of endosperm filling in inferior grains,the role of the embryo remains underexplored and warrants comprehensive investigation.Two Wuyujing 3 mutants,DW024(relatively synchronous;syn-DW024)and DW179(significantly asynchronous;asyn-DW179),with different grain-filling patterns were used in this study.Samples of superior and inferior grains were collected at intervals from 5 to 60 d after fertilization and subsequently dissected into subsamples of the embryo and endosperm.Histochemical staining,biochemical analysis,and RNA sequencing(RNA-seq)were combined to systematically compare developmental and physiological traits between superior and inferior grains.Combining hierarchical clustering of mRNA datasets revealed three developmental phases of the endosperm and embryo:morphogenesis,endosperm filling/embryo enlargement,and maturation.In both syn-DW024 and asyn-DW179,the duration of the endosperm/embryo morphogenesis phase was identical in superior and inferior grains.The inferior grains of asyn-DW179 exhibited a 10-day prolongation in the endosperm filling phase and a 20-day extension in the embryo enlargement phase compared to the superior grains.The endosperm of inferior grains exhibited higher contents of sugars and free amino acids,along with slower accumulation of storage compounds,which was associated with the down-regulation of genes for starch synthesis and ABA signaling.In addition,transporters for nutrient exchanges between endosperm and embryo were down-regulated,suggesting a potential role of the embryo in adjusting the endosperm filling process.Collectively,our results reveal that the prolonged phases of endosperm filling and embryo enlargement may underlie the impaired development of inferior grains,offering a new perspective for breeding or cultivating rice with uniform grain quality.展开更多
The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring.This process is believed to be evolutionarily associated with genomic imprinting,resulting in parentall...The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring.This process is believed to be evolutionarily associated with genomic imprinting,resulting in parentally biased allelic gene expression.Beyond Fertilization Independent Seed(FIS)genes,the number of imprinted genes involved in early endosperm development and seed size determination remains limited.This study introduces early endosperm-expressed HAIKU(IKU)downstream Candidate F-box 1(ICF1)and ICF2 as maternally expressed imprinted genes(MEGs)in Arabidopsis thaliana.Although these genes are also demethylated by DEMETER(DME)in the central cell,their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes.Instead,ICF maternal alleles carry pre-established hypomethylation in their promoters,priming them for activation by the WRKY10 transcription factor in the endosperm.On the contrary,paternal alleles are predominantly suppressed by CG methylation.Furthermore,we find that ICF genes partially contribute to the small seed size observed in iku mutants.Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes,which was previously not fully recognized.Therefore,the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.展开更多
Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morpho...Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morphological features of PCD have been found in the developing starchy endosperm cells, e.g. nucleus deformation, chromatin condensation, nuclear envelope disruption, and nuclear matrix leakage. DNA ladder displayed a smear of large DNA fragments from nucleus and evident bands of small DNA fragments (140-180 bp) from both nucleus and cytoplasm. In contrast with the rapid nucleus degradation, cell organelles in cytoplasm, such as rough endoplasmic reticulum, amyloplast, and mitochondrion, maintained their metabolic functions for a longer time. Seed reserves were continually synthesized and accumulated in the starchy endosperm cells despite the nucleus degradation during the PCD process. These results suggest that starchy endosperm cells remain active during reserve material synthesis and accumulation in the PCD process. The specific relationships between nucleus and cytoplasm in the developing endosperm cells and the morphological changes of nucleus in the endosperm PCD process were also discussed.展开更多
A statistical method for mapping quantitative trait loci (QTLs) underlying endosperm traits is proposed. The method is based on a genetic model containing both the direct effects and maternal effects of an endosperm...A statistical method for mapping quantitative trait loci (QTLs) underlying endosperm traits is proposed. The method is based on a genetic model containing both the direct effects and maternal effects of an endosperm QTL and on an experimental design termed two-stage hierarchical design, in which the trait information is obtained from F3 endosperms and molecular marker information is obtained from F2 plants and F3 embryos (plants). Results of computer simulations indicate that the method can efficiently map endosperm QTLs and precisely estimate both the direct and maternal effects of endosperm QTLs when the sample size is sufficiently large.展开更多
[Objective] This research aimed to study the FTIR spectra of corn germs and endosperms so as to provide a scientific way for identifying corn of different types. [Method] The corn germs and endosperms of three types w...[Objective] This research aimed to study the FTIR spectra of corn germs and endosperms so as to provide a scientific way for identifying corn of different types. [Method] The corn germs and endosperms of three types were studied by using Fourier transform infrared spectroscopy(FTIR) technology, combined with cluster analysis. [Result] The overall characteristics of original FTIR spectra were basically similar within the range of 700-1 800 cm^-1. The FTIR spectra were mainly composed by the absorption peaks of polysaccharides, proteins and lipids. Within the wavelength range of 700-1 800 cm^-1, there were only tiny differences in original FTIR spectra among the corn germs and endosperms of three different types. The spectra were then processed by using first derivative and second derivative. The second derivative spectra were used for hierarchical cluster analysis(HCA). The results showed that with the wavelength range of 700-1 800 cm^-1, the second derivative spectra of the 52 samples could be better clustered according to the tree types and corn germ and corn endosperm. The clustering correct rate reached 96.1%.[Conclusion] FTIR technology, combined with cluster analysis, can be used to identify different types of corn germs and endosperms, and it is characterized by convenience and rapidness.展开更多
基金supported by Biological Breeding-National Science and Technology Major Project(2023ZD04069)Young Scientist Project(2023YFD1200008)+2 种基金the National Natural Science Foundation of China(32472122)Sichuan Provincial General Project(24NSFSC1704)the Open Project Program and Biological Breeding Program of State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China(SKL-ZY202211).
文摘Phosphorylation is one of the major posttranslational modifications to control plant growth and development.Opaque2(O2)represents a central hub for endosperm filling,which largely determines seed yield and nutrient storage in maize.However,it still remains unclear how O2 phosphorylation orchestrates endosperm filling and nutrient quality.Here,we systematically identified the phosphorylation sites of O2 during endosperm filling.A total of 18 phosphorylation sites were found in O2 and five sites were identified to apparently modulate its subcellular localization and transactivation capacity.In addition,a conserved protein kinase CK1 was confirmed to interact with and phosphorylate O2 at the residue Threonine(T)202 to promote O2-mediated transactivation and protein stability.Overexpression of CK1 resulted in increased kernel size,100-kernel weight and nutrient storage.Phosphorylation-mimic O2 seeds at T202 exhibited enhanced kernel dimension,test weight,vitreous endosperm area and nutrient accumulation,whereas the phosphorylation-deficient O2 seeds did not.Collectively,this study establishes a comprehensive phosphocode atlas of O2 during endosperm filling and highlights the importance of phosphorylation modification in O2 to precisely orchestrate maize yield and nutrient quality.
基金supported by the National Key Research and Development Program of China(2022YFD2300700)the National Natural Science Foundation of China(32201894)+1 种基金Hainan Provincial Natural Science Foundation of China(323QN193)Rothamsted Research receives strategic funding from the Biotechnological and Biological Sciences Research Council of the UK.Matthew J.Paul acknowledges funding from the Delivering Sustainable Wheat(BB/X011003/1)Strategic Program.
文摘Inferior grains exhibit delayed developmental processes and reduced metabolic activities compared to superior grains,leading to unstable rice yield and quality.While significant advancements have been achieved in elucidating the physiology of endosperm filling in inferior grains,the role of the embryo remains underexplored and warrants comprehensive investigation.Two Wuyujing 3 mutants,DW024(relatively synchronous;syn-DW024)and DW179(significantly asynchronous;asyn-DW179),with different grain-filling patterns were used in this study.Samples of superior and inferior grains were collected at intervals from 5 to 60 d after fertilization and subsequently dissected into subsamples of the embryo and endosperm.Histochemical staining,biochemical analysis,and RNA sequencing(RNA-seq)were combined to systematically compare developmental and physiological traits between superior and inferior grains.Combining hierarchical clustering of mRNA datasets revealed three developmental phases of the endosperm and embryo:morphogenesis,endosperm filling/embryo enlargement,and maturation.In both syn-DW024 and asyn-DW179,the duration of the endosperm/embryo morphogenesis phase was identical in superior and inferior grains.The inferior grains of asyn-DW179 exhibited a 10-day prolongation in the endosperm filling phase and a 20-day extension in the embryo enlargement phase compared to the superior grains.The endosperm of inferior grains exhibited higher contents of sugars and free amino acids,along with slower accumulation of storage compounds,which was associated with the down-regulation of genes for starch synthesis and ABA signaling.In addition,transporters for nutrient exchanges between endosperm and embryo were down-regulated,suggesting a potential role of the embryo in adjusting the endosperm filling process.Collectively,our results reveal that the prolonged phases of endosperm filling and embryo enlargement may underlie the impaired development of inferior grains,offering a new perspective for breeding or cultivating rice with uniform grain quality.
基金supported by the National Natural Science Foundation of China(31570322)。
文摘The early development of the endosperm is crucial for balancing the allocation of maternal nutrients to offspring.This process is believed to be evolutionarily associated with genomic imprinting,resulting in parentally biased allelic gene expression.Beyond Fertilization Independent Seed(FIS)genes,the number of imprinted genes involved in early endosperm development and seed size determination remains limited.This study introduces early endosperm-expressed HAIKU(IKU)downstream Candidate F-box 1(ICF1)and ICF2 as maternally expressed imprinted genes(MEGs)in Arabidopsis thaliana.Although these genes are also demethylated by DEMETER(DME)in the central cell,their activation differs from the direct DME-mediated activation seen in classical MEGs such as the FIS genes.Instead,ICF maternal alleles carry pre-established hypomethylation in their promoters,priming them for activation by the WRKY10 transcription factor in the endosperm.On the contrary,paternal alleles are predominantly suppressed by CG methylation.Furthermore,we find that ICF genes partially contribute to the small seed size observed in iku mutants.Our discovery reveals a two-step regulatory mechanism that highlights the important role of conventional transcription factors in the activation of imprinted genes,which was previously not fully recognized.Therefore,the mechanism provides a new dimension to understand the transcriptional regulation of imprinting in plant reproduction and development.
文摘Ultrastructural features of nucleus degradation during programmed cell death (PCD) of starchy endosperm cells in rice ( Oryza sativa L.) were observed using transmission electron microscopy. Several distinct morphological features of PCD have been found in the developing starchy endosperm cells, e.g. nucleus deformation, chromatin condensation, nuclear envelope disruption, and nuclear matrix leakage. DNA ladder displayed a smear of large DNA fragments from nucleus and evident bands of small DNA fragments (140-180 bp) from both nucleus and cytoplasm. In contrast with the rapid nucleus degradation, cell organelles in cytoplasm, such as rough endoplasmic reticulum, amyloplast, and mitochondrion, maintained their metabolic functions for a longer time. Seed reserves were continually synthesized and accumulated in the starchy endosperm cells despite the nucleus degradation during the PCD process. These results suggest that starchy endosperm cells remain active during reserve material synthesis and accumulation in the PCD process. The specific relationships between nucleus and cytoplasm in the developing endosperm cells and the morphological changes of nucleus in the endosperm PCD process were also discussed.
基金This work was supported by the Key Sci-Tech Project of Fujian Province (No. 2004NZ01-2) the Natural Science Foundation of Fujian Province of China (No. 2006J0300).
文摘A statistical method for mapping quantitative trait loci (QTLs) underlying endosperm traits is proposed. The method is based on a genetic model containing both the direct effects and maternal effects of an endosperm QTL and on an experimental design termed two-stage hierarchical design, in which the trait information is obtained from F3 endosperms and molecular marker information is obtained from F2 plants and F3 embryos (plants). Results of computer simulations indicate that the method can efficiently map endosperm QTLs and precisely estimate both the direct and maternal effects of endosperm QTLs when the sample size is sufficiently large.
基金Supported by National Natural Science Foundation of China(30960179)Natural Science Foundation of Yunnan Province(2007A048M)~~
文摘[Objective] This research aimed to study the FTIR spectra of corn germs and endosperms so as to provide a scientific way for identifying corn of different types. [Method] The corn germs and endosperms of three types were studied by using Fourier transform infrared spectroscopy(FTIR) technology, combined with cluster analysis. [Result] The overall characteristics of original FTIR spectra were basically similar within the range of 700-1 800 cm^-1. The FTIR spectra were mainly composed by the absorption peaks of polysaccharides, proteins and lipids. Within the wavelength range of 700-1 800 cm^-1, there were only tiny differences in original FTIR spectra among the corn germs and endosperms of three different types. The spectra were then processed by using first derivative and second derivative. The second derivative spectra were used for hierarchical cluster analysis(HCA). The results showed that with the wavelength range of 700-1 800 cm^-1, the second derivative spectra of the 52 samples could be better clustered according to the tree types and corn germ and corn endosperm. The clustering correct rate reached 96.1%.[Conclusion] FTIR technology, combined with cluster analysis, can be used to identify different types of corn germs and endosperms, and it is characterized by convenience and rapidness.