期刊文献+
共找到4,347篇文章
< 1 2 218 >
每页显示 20 50 100
Distributed State and Fault Estimation for Cyber-Physical Systems Under DoS Attacks
1
作者 Limei Liang Rong Su Haotian Xu 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期261-263,共3页
Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded... Dear Editor,The letter deals with the distributed state and fault estimation of the whole physical layer for cyber-physical systems(CPSs) when the cyber layer suffers from DoS attacks. With the advancement of embedded computing, communication and related hardware technologies, CPSs have attracted extensive attention and have been widely used in power system, traffic network, refrigeration system and other fields. 展开更多
关键词 cyber physical systems refrigeration system traffic network dos attacks distributed state fault estimation embedded computing power system distributed state estimation
在线阅读 下载PDF
Improved Zero-Dynamics Attack Scheduling With State Estimation
2
作者 Zhe Wang Heng Zhang +1 位作者 Chaoqun Yang Xianghui Cao 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期472-474,共3页
Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of a... Dear Editor,This letter focuses on how an attacker can design suitable improved zero-dynamics (ZD) attack signal based on state estimates of target system. Improved ZD attack is to change zero dynamic gain matrix of attack signal to a matrix with determinant greater than 1. 展开更多
关键词 change zero dynamic gain matrix target system state estimation SCHEDULING attack signal improved zd state estimates improved zero dynamics attack
在线阅读 下载PDF
Factor graph method for target state estimation in bearing-only sensor network
3
作者 CHEN Zhan FANG Yangwang +1 位作者 ZHANG Ruitao FU Wenxing 《Journal of Systems Engineering and Electronics》 2025年第2期380-396,共17页
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.... For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method. 展开更多
关键词 factor graph cubature information filtering bearing-only sensor network state estimation
在线阅读 下载PDF
Optimal probe states for phase estimation with a fixed mean particle number
4
作者 Jin-Feng Qin Bo Liu 《Communications in Theoretical Physics》 2025年第7期33-44,共12页
Quantum phase estimation reveals the power of quantum resources to beat the standard quantum limit and has been widely used in many fields.To improve the precision of phase estimation,we discuss the optimal probe stat... Quantum phase estimation reveals the power of quantum resources to beat the standard quantum limit and has been widely used in many fields.To improve the precision of phase estimation,we discuss the optimal probe states for phase estimation with a fixed mean particle number.By searching for the maximum quantum Fisher information,we optimize the probe states,which are superior to the path-entangled Fock states.Comparing the mean particle number(n)with the dimension of the probe states in Fock space(N+1),when n≤N,our optimal probe states can provide a better performance than the n00n states.When n>N,our optimal probe states can also remain optimal if the dimension of the probe states is large enough. 展开更多
关键词 phase estimation quantum Fisher information optimal probe states
原文传递
Collaborative State Estimation for Coupled Transmission and Distribution Systems Based on Clustering Analysis and Equivalent Measurement Modeling
5
作者 Hao Jiao Xinyu Liu +4 位作者 Chen Wu Chunlei Xu Zhijun Zhou Ye Chen Guoqiang Sun 《Energy Engineering》 2025年第7期2977-2992,共16页
With the continuous expansion of the power system scale and the increasing complexity of operational mode,the interaction between transmission and distribution systems is becoming more and more significant,placing hig... With the continuous expansion of the power system scale and the increasing complexity of operational mode,the interaction between transmission and distribution systems is becoming more and more significant,placing higher requirements on the accuracy and efficiency of the power system state estimation to address the challenge of balancing computational efficiency and estimation accuracy in traditional coupled transmission and distribution state estimation methods,this paper proposes a collaborative state estimation method based on distribution systems state clustering and load model parameter identification.To resolve the scalability issue of coupled transmission and distribution power systems,clustering is first carried out based on the distribution system states.As the data and models of the transmission system and distribution systems are not shared.For the transmission system,equating the power transmitted from the transmission system to the distribution system is the same as equating the distribution system.Further,the power transmitted from the transmission system to different types of distribution systems is equivalent to different polynomial equivalent load models.Then,a parameter identification method is proposed to obtain the parameters of the equivalent load model.Finally,a transmission and distribution collaborative state estimation model is constructed based on the equivalent load model.The results of the numerical analysis show that compared with the traditional master-slave splitting method,the proposed method significantly enhances computational efficiency while maintaining high estimation accuracy. 展开更多
关键词 Transmission and distribution collaboration cluster analysis parameter identification equivalent load state estimation
在线阅读 下载PDF
Deep Learning Approaches for Battery Capacity and State of Charge Estimation with the NASA B0005 Dataset
6
作者 Zeyang Zhou Zachary James Ryan +5 位作者 Utkarsh Sharma Tran Tien Anh Shashi Mehrotra Angelo Greco Jason West Mukesh Prasad 《Computers, Materials & Continua》 2025年第6期4795-4813,共19页
Accurate capacity and State of Charge(SOC)estimation are crucial for ensuring the safety and longevity of lithium-ion batteries in electric vehicles.This study examines ten machine learning architectures,Including Dee... Accurate capacity and State of Charge(SOC)estimation are crucial for ensuring the safety and longevity of lithium-ion batteries in electric vehicles.This study examines ten machine learning architectures,Including Deep Belief Network(DBN),Bidirectional Recurrent Neural Network(BiDirRNN),Gated Recurrent Unit(GRU),and others using the NASA B0005 dataset of 591,458 instances.Results indicate that DBN excels in capacity estimation,achieving orders-of-magnitude lower error values and explaining over 99.97%of the predicted variable’s variance.When computational efficiency is paramount,the Deep Neural Network(DNN)offers a strong alternative,delivering near-competitive accuracy with significantly reduced prediction times.The GRU achieves the best overall performance for SOC estimation,attaining an R^(2) of 0.9999,while the BiDirRNN provides a marginally lower error at a slightly higher computational speed.In contrast,Convolutional Neural Networks(CNN)and Radial Basis Function Networks(RBFN)exhibit relatively high error rates,making them less viable for real-world battery management.Analyses of error distributions reveal that the top-performing models cluster most predictions within tight bounds,limiting the risk of overcharging or deep discharging.These findings highlight the trade-off between accuracy and computational overhead,offering valuable guidance for battery management system(BMS)designers seeking optimal performance under constrained resources.Future work may further explore advanced data augmentation and domain adaptation techniques to enhance these models’robustness in diverse operating conditions. 展开更多
关键词 Battery capacity estimation state of charge deep learning prediction efficiency energy storage systems
在线阅读 下载PDF
Analysis and estimation of wave-induced Doppler shift from low-incidence-angle RAR based on sea state parameters
7
作者 Jing Ye Yong Wan +3 位作者 Chenqing Fan Yongshou Dai Yisen Yang Xiangying Miao 《Acta Oceanologica Sinica》 2025年第9期169-182,共14页
The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars ref... The research on ocean dynamics information plays a crucial role in understanding ocean phenomena, assessing marine environmental impacts, and guiding engineering designs. The Doppler information observed by radars reflects sea surface dynamics, to which ocean waves make important contributions. Low-incidence-angle real aperture radar(RAR)demonstrates great potential for independently observing vectorial Doppler information on the ocean surface. To systematically characterize and accurately estimate the wave-induced Doppler frequency shift(WVF) from lowincidence-angle RAR, this study conducts comprehensive influencing factor analysis and establishes sea-stateparameterized WVF models. First, a simulated WVF dataset is generated under a rotating low-incidence-angle RAR.The feature parameters of WVF are then determined by analysing contributing factors including wind waves, swells,and sea state parameters. Furthermore, two WVF models(WVF_Ku P9 with 9 inputs and WVF_Ku P4 with 4 inputs) are constructed by the Transformer encoder for different application scenarios. Both models achieve high accuracy for WVF estimation with root mean square errors(RMSE) of 1.874 Hz and 2.716 Hz, respectively. The reliability and superiority of the proposed models are validated through comparisons with the Ka DOP, which is a typical geophysical model function(GMF). The findings in this paper advance the understanding of WVF characteristics and generation mechanisms. The proposed estimation models can provide reliable estimates, offering critical references for lowincidence-angle RAR applications such as ocean surface current retrieval. 展开更多
关键词 wave-induced Doppler shift parameter estimation low-incidence-angle real aperture radar sea state parameters Transformer encoder
在线阅读 下载PDF
Kalman filter based state estimation for the flexible multibody system described by ANCF
8
作者 Zuqing Yu Shuaiyi Liu Qinglong Tian 《Acta Mechanica Sinica》 2025年第5期207-218,共12页
The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with ... The state estimation of the flexible multibody systems is a vital issue since it is the base of effective control and condition monitoring.The research on the state estimation method of flexible multibody system with large deformation and large rotation remains rare.In this investigation,a state estimator based on multiple nonlinear Kalman filtering algorithms was designed for the flexible multibody systems containing large flexibility components that were discretized by absolute nodal coordinate formulation(ANCF).The state variable vector was constructed based on the independent coordinates which are identified through the constraint Jacobian.Three types of Kalman filters were used to compare their performance in the state estimation for ANCF.Three cases including flexible planar rotating beam,flexible four-bar mechanism,and flexible rotating shaft were employed to verify the proposed state estimator.According to the different performances of the three types of Kalman filter,suggestions were given for the construction of the state estimator for the flexible multibody system. 展开更多
关键词 Nonlinear Kalman filter Absolute nodal coordinate formulation Flexible multibody system dynamics state estimation
原文传递
Enhanced robustness in constant modulus blind beamforming through L1-regularized state estimation with variable-splitting Kalman smoother and IEKS
9
作者 Chuanhui HAO Bin ZHANG Xubao SUN 《Chinese Journal of Aeronautics》 2025年第6期573-590,共18页
This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel a... This paper aims to enhance the array Beamforming(BF) robustness by tackling issues related to BF weight state estimation encountered in Constant Modulus Blind Beamforming(CMBB). To achieve this, we introduce a novel approach that incorporates an L1-regularizer term in BF weight state estimation. We start by explaining the CMBB formation mechanism under conditions where there is a mismatch in the far-field signal model. Subsequently, we reformulate the BF weight state estimation challenge using a method known as variable-splitting, turning it into a noise minimization problem. This problem combines both linear and nonlinear quadratic terms with an L1-regularizer that promotes the sparsity. The optimization strategy is based on a variable-splitting method, implemented using the Alternating Direction Method of Multipliers(ADMM). Furthermore, a variable-splitting framework is developed to enhance BF weight state estimation, employing a Kalman Smoother(KS) optimization algorithm. The approach integrates the Rauch-TungStriebel smoother to perform posterior-smoothing state estimation by leveraging prior data. We provide proof of convergence for both linear and nonlinear CMBB state estimation technology using the variable-splitting KS and the iterated extended Kalman smoother. Simulations corroborate our theoretical analysis, showing that the proposed method achieves robust stability and effective convergence, even when faced with signal model mismatches. 展开更多
关键词 state estimation Constant modulus blind beamforming Kalman smoother Alternating direction method of multipliers Variable-splitting optimizer
原文传递
Dual Extended Kalman Filter for Combined Estimation of Vehicle State and Road Friction 被引量:21
10
作者 ZONG Changfu HU Dan ZHENG Hongyu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第2期313-324,共12页
Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, man... Vehicle state and tire-road adhesion are of great use and importance to vehicle active safety control systems. However, it is always not easy to obtain the information with high accuracy and low expense. Recently, many estimation methods have been put forward to solve such problems, in which Kalman filter becomes one of the most popular techniques. Nevertheless, the use of complicated model always leads to poor real-time estimation while the role of road friction coefficient is often ignored. For the purpose of enhancing the real time performance of the algorithm and pursuing precise estimation of vehicle states, a model-based estimator is proposed to conduct combined estimation of vehicle states and road friction coefficients. The estimator is designed based on a three-DOF vehicle model coupled with the Highway Safety Research Institute(HSRI) tire model; the dual extended Kalman filter (DEKF) technique is employed, which can be regarded as two extended Kalman filters operating and communicating simultaneously. Effectiveness of the estimation is firstly examined by comparing the outputs of the estimator with the responses of the vehicle model in CarSim under three typical road adhesion conditions(high-friction, low-friction, and joint-friction). On this basis, driving simulator experiments are carried out to further investigate the practical application of the estimator. Numerical results from CarSim and driving simulator both demonstrate that the estimator designed is capable of estimating the vehicle states and road friction coefficient with reasonable accuracy. The DEKF-based estimator proposed provides the essential information for the vehicle active control system with low expense and decent precision, and offers the possibility of real car application in future. 展开更多
关键词 vehicle state road friction coefficient estimation dual extended Kalman filter (DEKF)
在线阅读 下载PDF
Coupled dynamic model of state estimation for hypersonic glide vehicle 被引量:14
11
作者 ZHANG Kai XIONG Jiajun FU Tingting 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1284-1292,共9页
Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl... Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly. 展开更多
关键词 hypersonic glide vehicle state estimation dynamic model aerodynamic parameter guidance variable
在线阅读 下载PDF
Power System State Estimation Solution With Zero Injection Constraints Using Modified Newton Method and Fast Decoupled Method in Polar Coordinate 被引量:13
12
作者 GUO Ye ZHANG Boming +1 位作者 WU Wenchuag SUN Hongbin 《中国电机工程学报》 EI CSCD 北大核心 2012年第22期I0015-I0015,11,共1页
In actual power systems,most of the high-voltage buses of the transformers are zero injection buses without load or generation.Power injections into these buses are strictly 0,so based on Kirchhoff's current law(K... In actual power systems,most of the high-voltage buses of the transformers are zero injection buses without load or generation.Power injections into these buses are strictly 0,so based on Kirchhoff's current law(KCL),equality constraints should be used to handle these buses in a state estimation model.It is a challenge to ensure that these zero injection constraints can be strictly satisfied without losing computational efficiency. 展开更多
关键词 state estimation zero injection equality constraints polar coordinate modified Newton method modified fast decoupled state estimation
原文传递
Simultaneous state and actuator fault estimation for satellite attitude control systems 被引量:9
13
作者 Cheng Yao Wang Rixin +1 位作者 Xu Minqiang Li Yuqing 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第3期714-721,共8页
In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performance... In this paper, a new nonlinear augmented observer is proposed and applied to satellite attitude control systems. The observer can estimate system state and actuator fault simultaneously. It can enhance the performances of rapidly-varying faults estimation. Only original system matrices are adopted in the parameter design. The considered faults can be unbounded, and the proposed augmented observer can estimate a large class of faults. Systems without disturbances and the fault whose finite times derivatives are zero piecewise are initially considered, followed by a discussion of a general situation where the system is subject to disturbances and the finite times derivatives of the faults are not null but bounded. For the considered nonlinear system, convergence conditions of the observer are provided and the stability analysis is performed using Lyapunov direct method. Then a feasible algorithm is explored to compute the observer parameters using linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed approach is illustrated by considering an example of a closed-loop satellite attitude control system. The mance in estimating states and actuator faults. It also successfully. simulation results show satisfactory perfor- shows that multiple faults can be estimated 展开更多
关键词 Actuator fault estimation Augmented state observer Fault diagnosis Lipschitz nonlinear systemSatellite attitude controlsystem
原文传递
State of charge estimation of Li-ion batteries in an electric vehicle based on a radial-basis-function neural network 被引量:6
14
作者 毕军 邵赛 +1 位作者 关伟 王璐 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第11期560-564,共5页
The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial... The on-line estimation of the state of charge (SOC) of the batteries is important for the reliable running of the pure electric vehicle in practice. Because a nonlinear feature exists in the batteries and the radial-basis-function neural network (RBF NN) has good characteristics to solve the nonlinear problem, a practical method for the SOC estimation of batteries based on the RBF NN with a small number of input variables and a simplified structure is proposed. Firstly, in this paper, the model of on-line SOC estimation with the RBF NN is set. Secondly, four important factors for estimating the SOC are confirmed based on the contribution analysis method, which simplifies the input variables of the RBF NN and enhttnces the real-time performance of estimation. FiItally, the pure electric buses with LiFePO4 Li-ion batteries running during the period of the 2010 Shanghai World Expo are considered as the experimental object. The performance of the SOC estimation is validated and evaluated by the battery data from the electric vehicle. 展开更多
关键词 state of charge estimation BATTERY electric vehicle radial-basis-function neural network
原文传递
Encrypted Finite-Horizon Energy-to-Peak State Estimation for Time-Varying Systems Under Eavesdropping Attacks: Tackling Secrecy Capacity 被引量:6
15
作者 Lei Zou Zidong Wang +2 位作者 Bo Shen Hongli Dong Guoping Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第4期985-996,共12页
This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measu... This paper is concerned with the problem of finitehorizon energy-to-peak state estimation for a class of networked linear time-varying systems.Due to the inherent vulnerability of network-based communication,the measurement signals transmitted over a communication network might be intercepted by potential eavesdroppers.To avoid information leakage,by resorting to an artificial-noise-assisted method,we develop a novel encryption-decryption scheme to ensure that the transmitted signal is composed of the raw measurement and an artificial-noise term.A special evaluation index named secrecy capacity is employed to assess the information security of signal transmissions under the developed encryption-decryption scheme.The purpose of the addressed problem is to design an encryptiondecryption scheme and a state estimator such that:1)the desired secrecy capacity is ensured;and 2)the required finite-horizon–l_(2)-l_(∞)performance is achieved.Sufficient conditions are established on the existence of the encryption-decryption mechanism and the finite-horizon state estimator.Finally,simulation results are proposed to show the effectiveness of our proposed encryption-decryption-based state estimation scheme. 展开更多
关键词 Artificial-noise-assisted technique EAVESDROPPING encryption-decryption scheme energy-to-peak state estimation finitehorizon state estimation
在线阅读 下载PDF
Adaptive unscented Kalman filter for parameter and state estimation of nonlinear high-speed objects 被引量:11
16
作者 Fang Deng Jie Chen Chen Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第4期655-665,共11页
An adaptive unscented Kalman filter(AUKF)and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects.A strong tracking filter is employed to i... An adaptive unscented Kalman filter(AUKF)and an augmented state method are employed to estimate the timevarying parameters and states of a kind of nonlinear high-speed objects.A strong tracking filter is employed to improve the tracking ability and robustness of unscented Kalman filter(UKF)when the process noise is inaccuracy,and wavelet transform is used to improve the estimate accuracy by the variance of measurement noise.An augmented square-root framework is utilized to improve the numerical stability and accuracy of UKF.Monte Carlo simulations and applications in the rapid trajectory estimation of hypersonic artillery shells confirm the effectiveness of the proposed method. 展开更多
关键词 parameter estimation state estimation unscented Kalman filter(UKF) strong tracking filter wavelet transform.
在线阅读 下载PDF
Vehicle State and Parameter Estimation Based on Dual Unscented Particle Filter Algorithm 被引量:4
17
作者 林棻 王浩 +2 位作者 王伟 刘存星 谢春利 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期568-575,共8页
Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system.By studying the defects of the former Kalman filter based estimation method,a... Acquisition of real-time and accurate vehicle state and parameter information is critical to the research of vehicle dynamic control system.By studying the defects of the former Kalman filter based estimation method,a new estimating method is proposed.First the nonlinear vehicle dynamics system,containing inaccurate model parameters and constant noise,is established.Then a dual unscented particle filter(DUPF)algorithm is proposed.In the algorithm two unscented particle filters run in parallel,states estimation and parameters estimation update each other.The results of simulation and vehicle ground testing indicate that the DUPF algorithm has higher state estimation accuracy than unscented Kalman filter(UKF)and dual extended Kalman filter(DEKF),and it also has good capability to revise model parameters. 展开更多
关键词 vehicle dynamics dual unscented particle filter(DUPF) state estimation virtual experiment
在线阅读 下载PDF
Estimation of vehicle states and tire-road friction using parallel extended Kalman filtering 被引量:4
18
作者 Chang-fu ZONG Pan SONG Dan HU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2011年第6期446-452,共7页
A model-based estimator design and implementation is described in this paper to undertake combined estimation of vehicle states and tire-road friction coefficients.The estimator is designed based on a vehicle model wi... A model-based estimator design and implementation is described in this paper to undertake combined estimation of vehicle states and tire-road friction coefficients.The estimator is designed based on a vehicle model with three degrees of freedom(3-DOF) and the dual extended Kalman filter(DEKF) technique is employed.Effectiveness of the estimation is examined and validated by comparing the outputs of the estimator with the responses of the vehicle model in CarSim in three typical road adhesion conditions(high-friction,low-friction,and joint-friction roads).Simulation results demonstrate that the DEKF estimator algorithm designed is able to obtain vehicle states(e.g.,yaw rate and roll angle) as well as road friction coefficients with reasonable accuracy. 展开更多
关键词 Vehicle dynamics state estimation and system identification Active safety and passive safety
原文传递
Reconstruction of measurements in state estimation strategy against deception attacks for cyber physical systems 被引量:3
19
作者 Qinxue LI Bugong XU +2 位作者 Shanbin LI Yonggui LIU Delong CUI 《Control Theory and Technology》 EI CSCD 2018年第1期1-13,共13页
Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is ... Without the known state equation, a new state estimation strategy is designed to be against malicious attacks for cyber physical systems. Inspired by the idea of data reconstruction, the compressive sensing (CS) is applied to reconstruction of residual measurements after the detection and identification scheme based on the Markov graph of the system state, which increases the resilience of state estimation strategy against deception attacks. First, the observability analysis is introduced to decide the triggering time of the measurement reconstruction and the damage level from attacks. In particular, the dictionary learning is proposed to form the over-completed dictionary by K-singular value decomposition (K-SVD), which is produced adaptively according to the characteristics of the measurement data. In addition, due to the irregularity of residual measurements, a sampling matrix is designed as the measurement matrix. Finally, the simulation experiments are performed on 6-bus power system. Results show that the reconstruction of measurements is completed well by the proposed reconstruction method, and the corresponding effects are better than reconstruction scheme based on the joint dictionary and the traditional Gauss or Bernoulli random matrix respectively. Especially, when only 29% available clean measurements are left, performance of the proposed strategy is still extraordinary, which reflects generality for five kinds of recovery algorithms. 展开更多
关键词 state estimation deception attacks cyber physical systems reconstruction of measurements compressivesensing
原文传递
Estimation Method of State-of-Charge For Lithium-ion Battery Used in Hybrid Electric Vehicles Based on Variable Structure Extended Kalman Filter 被引量:18
20
作者 SUN Yong MA Zilin +2 位作者 TANG Gongyou CHEN Zheng ZHANG Nong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第4期717-726,共10页
Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention ... Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions. 展开更多
关键词 state of charge estimation hybrid electric vehicle general lower-order model variable structure EKF
在线阅读 下载PDF
上一页 1 2 218 下一页 到第
使用帮助 返回顶部