期刊文献+
共找到13,570篇文章
< 1 2 250 >
每页显示 20 50 100
布鲁氏菌分泌蛋白BPE043的功能及其对细胞凋亡基因表达的影响
1
作者 王书利 李梦含 +5 位作者 高萌萌 王倩 郑好 张荷婷 李志强 李启峰 《中国动物传染病学报》 北大核心 2025年第1期21-28,共8页
本研究旨在分析布鲁氏菌Ⅳ型分泌系统(T4SS)效应蛋白BPE043在布鲁氏菌感染过程和调控细胞凋亡基因表达中的作用。以流产布鲁氏菌2308(S2308)为亲本株,通过同源重组的方法构建布鲁氏菌BPE 043基因缺失株(2308ΔBPE 043)和回补株(2308ΔBP... 本研究旨在分析布鲁氏菌Ⅳ型分泌系统(T4SS)效应蛋白BPE043在布鲁氏菌感染过程和调控细胞凋亡基因表达中的作用。以流产布鲁氏菌2308(S2308)为亲本株,通过同源重组的方法构建布鲁氏菌BPE 043基因缺失株(2308ΔBPE 043)和回补株(2308ΔBPE 043-C)。将亲本株、缺失株和回补株在相同起始浓度下培养,观察它们的生长变化。亲本株、缺失株和回补株感染小鼠,测定小鼠脾脏的荷菌量。亲本株、缺失株和回补株侵染小鼠巨噬细胞RAW 264.7,检测细菌的胞内存活能力。利用实时荧光定量PCR(RT-qPCR)和Western blot技术检测布鲁氏菌侵染后细胞凋亡基因Caspase-3、Caspase-8、Bax和Bcl-2的表达水平。结果显示,亲本株、缺失株和回补株在体外培养的生长趋势基本相同。2308ΔBPE 043感染小鼠脾脏的荷菌量显著低于S2303感染组,且在感染2周后,缺失株感染组脾脏荷菌量的下降趋势较亲本株感染组明显。布鲁氏菌侵染宿主细胞8 h后,2308ΔBPE 043的胞内存活能力显著低于S2308。布鲁氏菌侵染宿主细胞24 h后,2308ΔBPE 043侵染组凋亡基因Caspase-3、Caspase-8和Bax表达水平显著高于S2308侵染组,Bcl-2表达水平显著低于S2308侵染组。2308ΔBPE 043侵染组Caspase-3和Caspase-8的蛋白表达水平,以及Caspase-3和Caspase-8的活性显著高于S2308侵染组。本研究发现,T4SS效应蛋白BPE043在布鲁氏菌感染和胞内存活过程中发挥重要作用,是布鲁氏菌重要的毒力因子,为进一步探究BPE043在布鲁氏菌持续性感染中的作用奠定了基础。 展开更多
关键词 布鲁氏菌 bpe043 胞内存活 毒力 凋亡
在线阅读 下载PDF
Joint Feature Encoding and Task Alignment Mechanism for Emotion-Cause Pair Extraction
2
作者 Shi Li Didi Sun 《Computers, Materials & Continua》 SCIE EI 2025年第1期1069-1086,共18页
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions... With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings. 展开更多
关键词 Emotion-cause pair extraction interactive information enhancement joint feature encoding label consistency task alignment mechanisms
在线阅读 下载PDF
Dual encoding feature filtering generalized attention UNET for retinal vessel segmentation
3
作者 ISLAM Md Tauhidul WU Da-Wen +6 位作者 TANG Qing-Qing ZHAO Kai-Yang YIN Teng LI Yan-Fei SHANG Wen-Yi LIU Jing-Yu ZHANG Hai-Xian 《四川大学学报(自然科学版)》 北大核心 2025年第1期79-95,共17页
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t... Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization. 展开更多
关键词 Vessel segmentation Data balancing Data augmentation Dual encoder Attention Mechanism Model generalization
在线阅读 下载PDF
Encoding converters for quantum communication networks
4
作者 Hua-Xing Xu Shao-Hua Wang +2 位作者 Ya-Qi Song Ping Zhang Chang-Lei Wang 《Chinese Physics B》 2025年第5期64-69,共6页
Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding ... Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types.To achieve direct communication between the devices with different quantum encoding types,in this paper,we propose encoding conversion schemes between the polarization bases(rectilinear,diagonal and circular bases)and the time-bin phase bases(two phase bases and time-bin basis)and design the quantum encoding converters.The theoretical analysis of the encoding conversion schemes is given in detail,and the basis correspondence of encoding conversion and the property of bit flip are revealed.The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter.Since no optical switches are used in our scheme,the converter can be operated with high speed.The converters can also be modularized,which may be utilized to realize miniaturization in the future. 展开更多
关键词 quantum communication networks encoding conversion polarization encoding time-bin phase encoding
原文传递
A Blockchain-Based Covert Communication Model Based on Dynamic Base-K Encoding
5
作者 Wang Zhujun Zhang Lejun +7 位作者 Li Xueqing Tian Zhihong Su Shen Qiu Jing Chen Huiling Qiu Tie Sergey Gataullin Guo Ran 《China Communications》 2025年第6期319-333,共15页
Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to comm... Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to communication security.This study introduces a blockchain-based covert communication model utilizing dynamic Base-K encoding.The proposed encoding scheme utilizes the input address sequence to determine K to encode the secret message and determines the order of transactions based on K,thus ensuring effective concealment of the message.The dynamic encoding parameters enhance flexibility and address issues related to identical transaction amounts for the same secret message.Experimental results demonstrate that the proposed method maintains smooth communication and low susceptibility to tampering,achieving commendable concealment and embedding rates. 展开更多
关键词 base-K encoding blockchain CONCEALMENT covert communication
在线阅读 下载PDF
Image encoding-based bearing fault diagnosis:Review and challenges for high-speed trains
6
作者 Huimin Li Lingfeng Li +1 位作者 Bin Liu Ge Xin 《High-Speed Railway》 2025年第3期251-259,共9页
High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal im... High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal importance. As critical rotating mechanical components of the transmission system, bearings make their fault diagnosis a topic of extensive attention. This paper provides a systematic review of image encoding-based bearing fault diagnosis methods tailored to the condition monitoring of HSTs. First, it categorizes the image encoding techniques applied in the field of bearing fault diagnosis. Then, a review of state-of-the-art studies has been presented, encompassing both monomodal image conversion and multimodal image fusion approaches. Finally, it highlights current challenges and proposes future research directions to advance intelligent fault diagnosis in HSTs, aiming to provide a valuable reference for researchers and engineers in the field of intelligent operation and maintenance. 展开更多
关键词 High-speed trains Image encoding Fault diagnosis Rotating machinery Condition monitoring
在线阅读 下载PDF
Validity of the Gaussian phase distribution approximation for analysis of isotropic diffusion encoding applied to restricted diffusion in a cylinder
7
作者 Daniel Topgaard 《Magnetic Resonance Letters》 2025年第4期20-27,共8页
The Gaussian phase distribution approximation enables analysis of restricted diffusion encoded by general gradient waveforms but fails to account for the diffraction-like features that may occur for simple pore geomet... The Gaussian phase distribution approximation enables analysis of restricted diffusion encoded by general gradient waveforms but fails to account for the diffraction-like features that may occur for simple pore geometries.We investigate the range of validity of the approximation by random walk simulations of restricted diffusion in a cylinder using isotropic diffusion encoding sequences as well as conventional single gradient pulse pairs and oscillating gradient waveforms.The results show that clear deviations from the approximation may be observed at relative signal attenuations below 0.1 for onedimensional sequences with few oscillation periods.Increasing the encoding dimensionality and/or number of oscillations while extending the total duration of the waveform diminishes the non-Gaussian effects while preserving the low apparent diffusivities characteristic of restriction. 展开更多
关键词 NMR DIFFUSION Porous media Pulsed gradient spin echo Tensor-valued encoding
在线阅读 下载PDF
Autonomous inverse encoding guides 4D nanoprinting for highly programmable shape morphing
8
作者 Shuaiqi Ren Zhiang Zhang +6 位作者 Ruokun He Jiahao Fan Guangming Wang Hesheng Wang Bing Han Yong-Lai Zhang Zhuo-Chen Ma 《International Journal of Extreme Manufacturing》 2025年第3期467-482,共16页
Highly programmable shape morphing of 4D-printed micro/nanostructures is urgently desired for applications in robotics and intelligent systems.However,due to the lack of autonomous holistic strategies throughout the t... Highly programmable shape morphing of 4D-printed micro/nanostructures is urgently desired for applications in robotics and intelligent systems.However,due to the lack of autonomous holistic strategies throughout the target shape input,optimal material distribution generation,and fabrication program output,4D nanoprinting that permits arbitrary shape morphing remains a challenging task for manual design.In this study,we report an autonomous inverse encoding strategy to decipher the genetic code for material property distributions that can guide the encoded modeling toward arbitrarily pre-programmed 4D shape morphing.By tuning the laser power of each voxel at the nanoscale,the genetic code can be spatially programmed and controllable shape morphing can be realized through the inverse encoding process.Using this strategy,the 4D-printed structures can be designed and accurately shift to the target morphing of arbitrarily hand-drawn lines under stimulation.Furthermore,as a proof-of-concept,a flexible fiber micromanipulator that can approach the target region through pre-programmed shape morphing is autonomously inversely encoded according to the localized spatial environment.This strategy may contribute to the modeling and arbitrary shape morphing of micro/nanostructures fabricated via 4D nanoprinting,leading to cutting-edge applications in microfluidics,micro-robotics,minimally invasive robotic surgery,and tissue engineering. 展开更多
关键词 femtosecond laser fabrication 4D printing two-photon polymerization autonomous inverse encoding stimuli-responsive materials
在线阅读 下载PDF
Enhancing the genomic prediction accuracy of swine agricultural economic traits using an expanded one-hot encoding in CNN models
9
作者 Zishuai Wang Wangchang Li Zhonglin Tang 《Journal of Integrative Agriculture》 2025年第9期3574-3582,共9页
Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction ac... Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction accuracy still presents signifcant challenges.In this study,we applied CNNs to predict swine traits using previously published data.Specifcally,we extensively evaluated the CNN model's performance by employing various sets of single nucleotide polymorphisms(SNPs)and concluded that the CNN model achieved optimal performance when utilizing SNP sets comprising 1,000 SNPs.Furthermore,we adopted a novel approach using the one-hot encoding method that transforms the 16 different genotypes into sets of eight binary variables.This innovative encoding method signifcantly enhanced the CNN's prediction accuracy for swine traits,outperforming the traditional one-hot encoding techniques.Our fndings suggest that the expanded one-hot encoding method can improve the accuracy of DL methods in the genomic prediction of swine agricultural economic traits.This discovery has significant implications for swine breeding programs,where genomic prediction is pivotal in improving breeding strategies.Furthermore,future research endeavors can explore additional enhancements to DL methods by incorporating advanced data pre-processing techniques. 展开更多
关键词 SWINE agricultural economic traits genomic prediction deep learning one-hot encoding convolutional neural networks(CNNs)
在线阅读 下载PDF
Improved Sensitivity Encoding Parallel Magnetic Resonance Imaging Reconstruction Algorithm Based on Efficient Sum of Outer Products Dictionary Learning
10
作者 DUAN Jizhong SU Yan 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期561-571,共11页
Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstr... Sensitivity encoding(SENSE)is a parallel magnetic resonance imaging(MRI)reconstruction model by utilizing the sensitivity information of receiver coils to achieve image reconstruction.The existing SENSE-based reconstruction algorithms usually used nonadaptive sparsifying transforms,resulting in a limited reconstruction accuracy.Therefore,we proposed a new model for accurate parallel MRI reconstruction by combining the L0 norm regularization term based on the efficient sum of outer products dictionary learning(SOUPDIL)with the SENSE model,called SOUPDIL-SENSE.The SOUPDIL-SENSE model is mainly solved by utilizing the variable splitting and alternating direction method of multipliers techniques.The experimental results on four human datasets show that the proposed algorithm effectively promotes the image sparsity,eliminates the noise and artifacts of the reconstructed images,and improves the reconstruction accuracy. 展开更多
关键词 parallel magnetic resonance imaging(MRI) sensitivity encoding(SENSE) efficient sum of outer products dictionary learning(SOUPDIL) alternating direction method of multipliers
原文传递
A Two-Layer Encoding Learning Swarm Optimizer Based on Frequent Itemsets for Sparse Large-Scale Multi-Objective Optimization 被引量:1
11
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Xu Yang Ruiqing Sun Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第6期1342-1357,共16页
Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.... Traditional large-scale multi-objective optimization algorithms(LSMOEAs)encounter difficulties when dealing with sparse large-scale multi-objective optimization problems(SLM-OPs)where most decision variables are zero.As a result,many algorithms use a two-layer encoding approach to optimize binary variable Mask and real variable Dec separately.Nevertheless,existing optimizers often focus on locating non-zero variable posi-tions to optimize the binary variables Mask.However,approxi-mating the sparse distribution of real Pareto optimal solutions does not necessarily mean that the objective function is optimized.In data mining,it is common to mine frequent itemsets appear-ing together in a dataset to reveal the correlation between data.Inspired by this,we propose a novel two-layer encoding learning swarm optimizer based on frequent itemsets(TELSO)to address these SLMOPs.TELSO mined the frequent terms of multiple particles with better target values to find mask combinations that can obtain better objective values for fast convergence.Experi-mental results on five real-world problems and eight benchmark sets demonstrate that TELSO outperforms existing state-of-the-art sparse large-scale multi-objective evolutionary algorithms(SLMOEAs)in terms of performance and convergence speed. 展开更多
关键词 Evolutionary algorithms learning swarm optimiza-tion sparse large-scale optimization sparse large-scale multi-objec-tive problems two-layer encoding.
在线阅读 下载PDF
Optoelectronic reservoir computing based on complex-value encoding 被引量:1
12
作者 Chunxu Ding Rongjun Shao +5 位作者 Jingwei Li Yuan Qu Linxian Liu Qiaozhi He Xunbin Wei Jiamiao Yang 《Advanced Photonics Nexus》 2024年第6期47-54,共8页
Optical reservoir computing(ORC)offers advantages,such as high computational speed,low power consumption,and high training speed,so it has become a competitive candidate for time series analysis in recent years.The cu... Optical reservoir computing(ORC)offers advantages,such as high computational speed,low power consumption,and high training speed,so it has become a competitive candidate for time series analysis in recent years.The current ORC employs single-dimensional encoding for computation,which limits input resolution and introduces extraneous information due to interactions between optical dimensions during propagation,thus constraining performance.Here,we propose complex-value encoding-based optoelectronic reservoir computing(CE-ORC),in which the amplitude and phase of the input optical field are both modulated to improve the input resolution and prevent the influence of extraneous information on computation.In addition,scale factors in the amplitude encoding can fine-tune the optical reservoir dynamics for better performance.We built a CE-ORC processing unit with an iteration rate of up to∼1.2 kHz using high-speed communication interfaces and field programmable gate arrays(FPGAs)and demonstrated the excellent performance of CE-ORC in two time series prediction tasks.In comparison with the conventional ORC for the Mackey–Glass task,CE-ORC showed a decrease in normalized mean square error by∼75%.Furthermore,we applied this method in a weather time series analysis and effectively predicted the temperature and humidity within a range of 24 h. 展开更多
关键词 optical reservoir computing complex-value encoding time series analysis weather forecast
在线阅读 下载PDF
A novel encoding mechanism for particle physics
13
作者 Zhi‑Guang Tan Sheng‑Jie Wang +2 位作者 You‑Neng Guo Hua Zheng Aldo Bonasera 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第8期153-166,共14页
This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to fac... This study proposes a novel particle encoding mechanism that seamlessly incorporates the quantum properties of particles,with a specific emphasis on constituent quarks.The primary objective of this mechanism is to facilitate the digital registration and identification of a wide range of particle information.Its design ensures easy integration with different event generators and digital simulations commonly used in high-energy experiments.Moreover,this innovative framework can be easily expanded to encode complex multi-quark states comprising up to nine valence quarks and accommodating an angular momentum of up to 99/2.This versatility and scalability make it a valuable tool. 展开更多
关键词 Multi-quark state encoding mechanism Constituent quark Particle physics
在线阅读 下载PDF
A highly reliable encoding and decoding communication framework based on semantic information
14
作者 Yichi Zhang Haitao Zhao +4 位作者 Kuo Cao Li Zhou Zhe Wang Yueling Liu Jibo Wei 《Digital Communications and Networks》 SCIE CSCD 2024年第3期509-518,共10页
Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding ... Increasing research has focused on semantic communication,the goal of which is to convey accurately the meaning instead of transmitting symbols from the sender to the receiver.In this paper,we design a novel encoding and decoding semantic communication framework,which adopts the semantic information and the contextual correlations between items to optimize the performance of a communication system over various channels.On the sender side,the average semantic loss caused by the wrong detection is defined,and a semantic source encoding strategy is developed to minimize the average semantic loss.To further improve communication reliability,a decoding strategy that utilizes the semantic and the context information to recover messages is proposed in the receiver.Extensive simulation results validate the superior performance of our strategies over state-of-the-art semantic coding and decoding policies on different communication channels. 展开更多
关键词 Semantic information Semantic encoding method Context-based decoding method
在线阅读 下载PDF
Variational data encoding and correlations in quantum-enhanced machine learning
15
作者 Ming-Hao Wang Hua L¨u 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期298-306,共9页
Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tac... Leveraging the extraordinary phenomena of quantum superposition and quantum correlation,quantum computing offers unprecedented potential for addressing challenges beyond the reach of classical computers.This paper tackles two pivotal challenges in the realm of quantum computing:firstly,the development of an effective encoding protocol for translating classical data into quantum states,a critical step for any quantum computation.Different encoding strategies can significantly influence quantum computer performance.Secondly,we address the need to counteract the inevitable noise that can hinder quantum acceleration.Our primary contribution is the introduction of a novel variational data encoding method,grounded in quantum regression algorithm models.By adapting the learning concept from machine learning,we render data encoding a learnable process.This allowed us to study the role of quantum correlation in data encoding.Through numerical simulations of various regression tasks,we demonstrate the efficacy of our variational data encoding,particularly post-learning from instructional data.Moreover,we delve into the role of quantum correlation in enhancing task performance,especially in noisy environments.Our findings underscore the critical role of quantum correlation in not only bolstering performance but also in mitigating noise interference,thus advancing the frontier of quantum computing. 展开更多
关键词 quantum machine learning variational data encoding quantum correlation
原文传递
Prediction of Pediatric Sepsis Using a Deep Encoding Network with Cross Features
16
作者 陈潇 张瑞 +1 位作者 汤心溢 钱娟 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第1期131-140,共10页
Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacillicul... Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacilliculture detection method is too time-consuming to receive timely treatment.In this research,we propose a new framework:a deep encoding network with cross features(CF-DEN)that enables accurate early detection of sepsis.Cross features are automatically constructed via the gradient boosting decision tree and distilled into the deep encoding network(DEN)we designed.The DEN is aimed at learning sufficiently effective representation from clinical test data.Each layer of the DEN fltrates the features involved in computation at current layer via attention mechanism and outputs the current prediction which is additive layer by layer to obtain the embedding feature at last layer.The framework takes the advantage of tree-based method and neural network method to extract effective representation from small clinical dataset and obtain accurate prediction in order to prompt patient to get timely treatment.We evaluate the performance of the framework on the dataset collected from Shanghai Children's Medical Center.Compared with common machine learning methods,our method achieves the increase on F1-score by 16.06%on the test set. 展开更多
关键词 pediatric sepsis gradient boosting decision tree cross feature neural network deep encoding network with cross features(CF-DEN)
原文传递
基于SCADA参量耦合网络变分图自编码的风电机组异常检测方法 被引量:2
17
作者 刘小峰 李俊锋 柏林 《太阳能学报》 北大核心 2025年第5期567-576,共10页
利用风电机组数据采集与监控系统(SCADA)数据监测参量本身数值信息及其相互间的耦合关联性,提出基于多参量耦合关系变分图自编码的风电机组异常检测方法。该方法利用时间序列自适应符号传递熵构建SCADA数据的参量耦合关系网络,设计变分... 利用风电机组数据采集与监控系统(SCADA)数据监测参量本身数值信息及其相互间的耦合关联性,提出基于多参量耦合关系变分图自编码的风电机组异常检测方法。该方法利用时间序列自适应符号传递熵构建SCADA数据的参量耦合关系网络,设计变分图自编码再编码模型对参量耦合关系网络进行编码重构。结合SCADA参量耦合关系网络的编码重构误差构建风电机组的健康状态评估指标,采用支持向量回归的迭代更新法,对机组实时健康阈值进行自适应设置。两个风场的风力发电机组SCADA数据分析结果表明:该文方法充分利用了SCADA数据本身的数值信息及耦合关系结构信息,有效提高了风电机组异常状态检测的准确性及对环境工况的鲁棒性。 展开更多
关键词 风电机组 多参量耦合 变分图自编码 健康指数 异常检测
原文传递
基于Radix-4 Booth编码的并行乘法器设计 被引量:1
18
作者 范文兵 周健章 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期26-33,共8页
速度和面积是评价乘法器单元性能优劣的两个基本指标。针对当前乘法器设计难以平衡版图面积和传输延时的问题,采用Radix-4 Booth算法,设计了一种新型的16位有符号定点乘法器。在部分积生成过程中,首先改进对乘数的取补码电路,然后优化... 速度和面积是评价乘法器单元性能优劣的两个基本指标。针对当前乘法器设计难以平衡版图面积和传输延时的问题,采用Radix-4 Booth算法,设计了一种新型的16位有符号定点乘法器。在部分积生成过程中,首先改进对乘数的取补码电路,然后优化基数为4的改进Booth编码器和解码器,此结构采用较少的逻辑门资源,并且易对输入比特进行并行化处理。在Wallace压缩电路中,对符号扩展位进行预处理并设计新的压缩器结构,优化整个Wallace压缩模块。在第二级压缩过程中提前对高位使用纹波进位加法器结构计算,减小了多bit伪和的求和位数。在求和电路中,使用两级超前进位加法器结构,在缩短关键路径传输延时的同时避免增大芯片面积,提高了乘法器的运行速度。新型定点乘法器与已有的乘法器结构相比,减少了12.0%的面积,降低了20.5%的延时。 展开更多
关键词 Radix-4 Booth编码 面积 传输延时 编码器 解码器 Wallace压缩
在线阅读 下载PDF
联合边缘检测强化空间细节的语义分割方法 被引量:1
19
作者 刘伯红 蒋佳跞 《重庆邮电大学学报(自然科学版)》 北大核心 2025年第1期57-66,共10页
针对图像语义分割中存在的边缘模糊和准确度较低的问题,提出一种基于边缘感知强化空间细节的图像语义分割方法,在语义分割网络中引入边缘检测模块,以捕获更加精细的空间细节。模型采用编码器-解码器结构,使用空间金字塔池化模块(atrous ... 针对图像语义分割中存在的边缘模糊和准确度较低的问题,提出一种基于边缘感知强化空间细节的图像语义分割方法,在语义分割网络中引入边缘检测模块,以捕获更加精细的空间细节。模型采用编码器-解码器结构,使用空间金字塔池化模块(atrous spatial pyramid pooling,ASPP)提取语义信息;提出双向多级聚合模块(bi-directional multi-level aggregation,BMLA)生成边缘特征,并使其强化空间细节;设计一种新型的基于注意力机制的特征融合模块(attention feature fusion module,AFFM),将强化后的空间特征与语义特征融合。采用Cityscapes和ADE20K数据集进行实验,对比其他主流语义分割算法,该方法在分割性能上具有不错的竞争力。 展开更多
关键词 语义分割 边缘检测 编码器-解码器 注意力机制
在线阅读 下载PDF
基于专利多属性融合的企业技术竞争对手识别研究——以新能源汽车领域为例 被引量:1
20
作者 冉从敬 冯若静 李旺 《情报理论与实践》 北大核心 2025年第5期91-100,共10页
[目的/意义]通过融合专利文本、IPC分类号、专利引用关系及专利数量,运用自然语言处理与图神经网络技术,提出一种技术竞争对手识别方法,以期实现对企业技术竞争对手的更精确预测。[方法/过程]首先,利用BERT和One-Hot方法分别处理专利文... [目的/意义]通过融合专利文本、IPC分类号、专利引用关系及专利数量,运用自然语言处理与图神经网络技术,提出一种技术竞争对手识别方法,以期实现对企业技术竞争对手的更精确预测。[方法/过程]首先,利用BERT和One-Hot方法分别处理专利文本和IPC分类信息,生成文本特征向量和分类特征向量,并将其拼接为融合向量。其次,基于专利间的引文耦合与共被引关系构建专利引用网络,并采用变分图自编码器(VGAE)模型对融合向量与专利引用网络形成的专利信息网络进行图嵌入学习,得到各专利的低维嵌入表示。最后,整合企业所有专利的嵌入表示,形成企业向量,并计算企业间的相似度值和企业降维特征向量,结合企业专利数量、企业相似度和降维特征向量,绘制技术竞争气泡图,从而识别企业的技术竞争对手。[结果/结论]以比亚迪新能源汽车为例,最终识别出吉利汽车、奇瑞汽车等技术竞争对手,此方法为企业制定技术竞争策略提供了参考依据。[局限]未充分考虑时间因素对专利引用关系演变和技术发展趋势的影响,这是未来的改进方向之一。 展开更多
关键词 多属性融合 技术竞争对手 专利分析 企业相似度 变分图自编码器
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部