期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multivariate time series prediction based on AR_CLSTM 被引量:2
1
作者 QIAO Gangzhu SU Rong ZHANG Hongfei 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第3期322-330,共9页
Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significanc... Time series is a kind of data widely used in various fields such as electricity forecasting,exchange rate forecasting,and solar power generation forecasting,and therefore time series prediction is of great significance.Recently,the encoder-decoder model combined with long short-term memory(LSTM)is widely used for multivariate time series prediction.However,the encoder can only encode information into fixed-length vectors,hence the performance of the model decreases rapidly as the length of the input sequence or output sequence increases.To solve this problem,we propose a combination model named AR_CLSTM based on the encoder_decoder structure and linear autoregression.The model uses a time step-based attention mechanism to enable the decoder to adaptively select past hidden states and extract useful information,and then uses convolution structure to learn the internal relationship between different dimensions of multivariate time series.In addition,AR_CLSTM combines the traditional linear autoregressive method to learn the linear relationship of the time series,so as to further reduce the error of time series prediction in the encoder_decoder structure and improve the multivariate time series Predictive effect.Experiments show that the AR_CLSTM model performs well in different time series predictions,and its root mean square error,mean square error,and average absolute error all decrease significantly. 展开更多
关键词 encoder_decoder attention mechanism CONVOLUTION autoregression model multivariate time series
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部