期刊文献+
共找到20,574篇文章
< 1 2 250 >
每页显示 20 50 100
Pyramid–MixNet: Integrate Attention into Encoder-Decoder Transformer Framework for Automatic Railway Surface Damage Segmentation
1
作者 Hui Luo Wenqing Li Wei Zeng 《Computers, Materials & Continua》 2025年第7期1567-1580,共14页
Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi... Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems. 展开更多
关键词 Pyramid vision transformer encoder–decoder architecture railway damage segmentation masked multi-head attention mix-attention
在线阅读 下载PDF
Rethinking the Encoder-decoder Structure in Medical Image Segmentation from Releasing Decoder Structure 被引量:1
2
作者 Jiajia Ni Wei Mu +1 位作者 An Pan Zhengming Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1511-1521,共11页
Medical image segmentation has witnessed rapid advancements with the emergence of encoder-decoder based methods.In the encoder-decoder structure,the primary goal of the decoding phase is not only to restore feature ma... Medical image segmentation has witnessed rapid advancements with the emergence of encoder-decoder based methods.In the encoder-decoder structure,the primary goal of the decoding phase is not only to restore feature map resolution,but also to mitigate the loss of feature information incurred during the encoding phase.However,this approach gives rise to a challenge:multiple up-sampling operations in the decoder segment result in the loss of feature information.To address this challenge,we propose a novel network that removes the decoding structure to reduce feature information loss(CBL-Net).In particular,we introduce a Parallel Pooling Module(PPM)to counteract the feature information loss stemming from conventional and pooling operations during the encoding stage.Furthermore,we incorporate a Multiplexed Dilation Convolution(MDC)module to expand the network's receptive field.Also,although we have removed the decoding stage,we still need to recover the feature map resolution.Therefore,we introduced the Global Feature Recovery(GFR)module.It uses attention mechanism for the image feature map resolution recovery,which can effectively reduce the loss of feature information.We conduct extensive experimental evaluations on three publicly available medical image segmentation datasets:DRIVE,CHASEDB and MoNuSeg datasets.Experimental results show that our proposed network outperforms state-of-the-art methods in medical image segmentation.In addition,it achieves higher efficiency than the current network of coding and decoding structures by eliminating the decoding component. 展开更多
关键词 Medical image segmentation encoder-decoder architecture Attention mechanisms Releasing decoder architecture Neural network
在线阅读 下载PDF
基于时空特征融合的Encoder-Decoder多步4D短期航迹预测 被引量:2
3
作者 石庆研 张泽中 韩萍 《信号处理》 CSCD 北大核心 2023年第11期2037-2048,共12页
航迹预测在确保空中交通安全、高效运行中扮演着至关重要的角色。所预测的航迹信息是航迹优化、冲突告警等决策工具的输入,而预测准确性取决于模型对航迹序列特征的提取能力。航迹序列数据是具有丰富时空特征的多维时间序列,其中每个变... 航迹预测在确保空中交通安全、高效运行中扮演着至关重要的角色。所预测的航迹信息是航迹优化、冲突告警等决策工具的输入,而预测准确性取决于模型对航迹序列特征的提取能力。航迹序列数据是具有丰富时空特征的多维时间序列,其中每个变量都呈现出长短期的时间变化模式,并且这些变量之间还存在着相互依赖的空间信息。为了充分提取这种时空特征,本文提出了基于融合时空特征的编码器-解码器(Spatio-Temporal EncoderDecoder,STED)航迹预测模型。在Encoder中使用门控循环单元(Gated Recurrent Unit,GRU)、卷积神经网络(Convolutional Neural Network,CNN)和注意力机制(Attention,AT)构成的双通道网络来分别提取航迹时空特征,Decoder对时空特征进行拼接融合,并利用GRU对融合特征进行学习和递归输出,实现对未来多步航迹信息的预测。利用真实的航迹数据对算法性能进行验证,实验结果表明,所提STED网络模型能够在未来10 min预测范围内进行高精度的短期航迹预测,相比于LSTM、CNN-LSTM和AT-LSTM等数据驱动航迹预测模型具有更高的精度。此外,STED网络模型预测一个航迹点平均耗时为0.002 s,具有良好的实时性。 展开更多
关键词 4D航迹预测 时空特征 encoder-decoder 门控循环单元
在线阅读 下载PDF
基于encoder-decoder框架的城镇污水厂出水水质预测 被引量:4
4
作者 史红伟 陈祺 +1 位作者 王云龙 李鹏程 《中国农村水利水电》 北大核心 2023年第11期93-99,共7页
由于污水厂的出水水质指标繁多、污水处理过程中反应复杂、时序非线性程度高,基于机理模型的预测方法无法取得理想效果。针对此问题,提出基于深度学习的污水厂出水水质预测方法,并以吉林省某污水厂监测水质为来源数据,利用多种结合encod... 由于污水厂的出水水质指标繁多、污水处理过程中反应复杂、时序非线性程度高,基于机理模型的预测方法无法取得理想效果。针对此问题,提出基于深度学习的污水厂出水水质预测方法,并以吉林省某污水厂监测水质为来源数据,利用多种结合encoder-decoder结构的神经网络预测水质。结果显示,所提结构对LSTM和GRU网络预测能力都有一定提升,对长期预测能力提升更加显著,ED-GRU模型效果最佳,短期预测中的4个出水水质指标均方根误差(RMSE)为0.7551、0.2197、0.0734、0.3146,拟合优度(R2)为0.9013、0.9332、0.9167、0.9532,可以预测出水质局部变化,而长期预测中的4个指标RMSE为1.7204、1.7689、0.4478、0.8316,R2为0.4849、0.5507、0.4502、0.7595,可以预测出水质变化趋势,与顺序结构相比,短期预测RMSE降低10%以上,R2增加2%以上,长期预测RMSE降低25%以上,R2增加15%以上。研究结果表明,基于encoder-decoder结构的神经网络可以对污水厂出水水质进行准确预测,为污水处理工艺改进提供技术支撑。 展开更多
关键词 污水厂出水 encoder-decoder 多指标水质预测 GRU模型
在线阅读 下载PDF
基于自注意力机制说话人编码器与SA-Decoder的语音克隆方法
5
作者 焦乐岩 朱欣娟 《计算机与现代化》 2025年第7期69-76,共8页
FreeVC模型在语音克隆技术领域表现出色。但是由于语音序列中包含复杂的语音特征变化和信息,例如音色、风格等,FreeVC模型中的Speaker Encoder模块只使用单一的LSTM网络难以准确地提取和表示说话人信息,这会导致模型处理语音序列的性能... FreeVC模型在语音克隆技术领域表现出色。但是由于语音序列中包含复杂的语音特征变化和信息,例如音色、风格等,FreeVC模型中的Speaker Encoder模块只使用单一的LSTM网络难以准确地提取和表示说话人信息,这会导致模型处理语音序列的性能下降,影响声音转换质量和准确性。并且FreeVC模型使用传统的解码器,其中上采样(反卷积)操作细节丢失,导致重建还原的音频咬字细节会模糊不清,从而产生音频伪影。针对这些问题,本文提出一种基于自注意力机制的说话人编码器与SA-Decoder的语音克隆方法FreeVC-SA。该方法将说话人的梅尔谱作为输入,在LSTM网络上加入自注意力机制有助于模型更好地捕捉长距离依赖关系,更为准确地提取说话人的音色、风格等特征。使用SA-Decoder可以很好地解决局部感受野限制问题,使得重建生成的语音克隆效果更加真实、清晰。实验结果表明,与所有基线模型相比,FreeVC-SA语音克隆的自然度相似性和情感相似性均有明显提升,字错误率和字符错误率均有明显下降。 展开更多
关键词 语音克隆 说话人编码器 SA-decoder 自注意力机制 FreeVC-SA
在线阅读 下载PDF
A medical image segmentation model based on SAM with an integrated local multi-scale feature encoder
6
作者 DI Jing ZHU Yunlong LIANG Chan 《Journal of Measurement Science and Instrumentation》 2025年第3期359-370,共12页
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ... Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis. 展开更多
关键词 segment anything model(SAM) medical image segmentation encoder decoder multiaxial Hadamard product module(MHPM) cross-branch balancing adapter
在线阅读 下载PDF
Anti-Interference High-Speed Modulation Decoder for Quantum Key Distribution
7
作者 Hua-Xing Xu Shao-Hua Wang +1 位作者 Chang-Lei Wang Ping Zhang 《Chinese Physics Letters》 2025年第1期34-39,共6页
Quantum key distribution is increasingly transitioning toward network applications,necessitating advancements in system performance,including photonic integration for compact designs,enhanced stability against environ... Quantum key distribution is increasingly transitioning toward network applications,necessitating advancements in system performance,including photonic integration for compact designs,enhanced stability against environmental disturbances,higher key rates,and improved efficiency.In this letter,we propose an orthogonal polarization exchange reflector Michelson interferometer model to address quantum channel disturbances caused by environmental factors.Based on this model,we designed a Sagnac reflector-Michelson interferometer decoder and verified its performance through an interference system.The interference fringe visibility exceeded 98%across all four coding phases at 625 MHz.These results indicate that the decoder effectively mitigates environmental interference while supporting high-speed modulation frequencies.In addition,the proposed anti-interference decoder,which does not rely on magneto-optical devices,is well-suited for photonic integration,aligning with the development trajectory for next-generation quantum communication devices. 展开更多
关键词 decoder INTERFEROMETER POLARIZATION
原文传递
Design of improved error-rate sliding window decoder for SC-LDPC codes: reliable termination and channel value reuse
8
作者 JIA Xishan LI Jining +3 位作者 YAO Yuan WANG Yifan LIU Bo XU Degang 《Optoelectronics Letters》 2025年第4期212-217,共6页
In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes u... In this paper,an improved error-rate sliding window decoder is proposed for spatially coupled low-density parity-check(SC-LDPC)codes.For the conventional sliding window decoder,the message retention mechanism causes unreliable messages along the edges of belief propagation(BP)decoding in the current window to be kept for subsequent window decoding.To improve the reliability of the retained messages during the window transition,a reliable termination method is embedded,where the retained messages undergo more reliable parity checks.Additionally,decoding failure is unavoidable and even causes error propagation when the number of errors exceeds the error-correcting capability of the window.To mitigate this problem,a channel value reuse mechanism is designed,where the received channel values are utilized to reinitialize the window.Furthermore,considering the complexity and performance of decoding,a feasible sliding optimized window decoding(SOWD)scheme is introduced.Finally,simulation results confirm the superior performance of the proposed SOWD scheme in both the waterfall and error floor regions.This work has great potential in the applications of wireless optical communication and fiber optic communication. 展开更多
关键词 reliable termination message retention mechanism reliable termination method sliding window decoderthe error rate sliding window decoder belief propagation bp decoding retained messages
原文传递
New Encoder Based on Grating Eddy-Current with Differential Structure
9
作者 ZHANG Zaigi LüNa +1 位作者 TAO Wei ZHAO Hui 《Journal of Shanghai Jiaotong university(Science)》 2025年第2期337-351,共15页
In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibration... In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibrations and the magnetic encoders are too sensitive to magnetic field density,this paper designs a new differential encoder based on the grating eddy-current measurement principle,abbreviated as differential grating eddy-current encoder(DGECE).The grating eddy-current of DGECE consists of a circular array of trapezoidal reflection conductors and 16 trapezoidal coils with a special structure to form a differential relationship,which are respectively located on the code plate and the readout plate designed by a printed circuit board.The differential structure of DGECE corrects the common mode interference and the amplitude distortion due to the assembly to some extent,possesses a certain anti-interference capability,and greatly simplifies the regularization algorithm of the original data.By means of the corresponding readout circuit and demodulation algorithm,the DGECE can convert the periodic impedance variation of 16 coils into an angular output within the 360°cycle.Due to its simple manufacturing process and certain interference immunity,DGECE is easy to be integrated and mass-produced as well as applicable in the industrial spindles,especially in robot joints.This paper presents the measurement principle,implementation methods,and results of the experiment of the DGECE.The experimental results show that the accuracy of the DGECE can reach 0.237%and the measurement standard deviation can reach±0.14°within360°cycle. 展开更多
关键词 encoder grating eddy-current differential structure angle measurement
原文传递
Global receptive field transformer decoder method on quantum surface code data and syndrome error correction
10
作者 Ao-Qing Li Ce-Wen Tian +2 位作者 Xiao-Xuan Xu Hong-Yang Ma Jun-Qing Liang 《Chinese Physics B》 2025年第3期267-276,共10页
Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in cu... Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes. 展开更多
关键词 quantum error correction surface code transformer decoder
原文传递
Research on Emotion Classification Supported by Multimodal Adversarial Autoencoder
11
作者 Jing Yu 《Journal of Electronic Research and Application》 2025年第1期270-275,共6页
In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the e... In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the experiment of the emotion classification method based on the encoder.The experimental analysis shows that the encoder has higher precision than other encoders in emotion classification.It is hoped that this analysis can provide some reference for the emotion classification under the current intelligent algorithm mode. 展开更多
关键词 Artificial intelligence Multimode adversarial encoder Sentiment classification Evaluation criteria Modal Settings
在线阅读 下载PDF
An Auto Encoder-Enhanced Stacked Ensemble for Intrusion Detection in Healthcare Networks
12
作者 Fatma S.Alrayes Mohammed Zakariah +2 位作者 Mohammed K.Alzaylaee Syed Umar Amin Zafar Iqbal Khan 《Computers, Materials & Continua》 2025年第11期3457-3484,共28页
Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the st... Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats. 展开更多
关键词 Intrusion detection auto encoder stacked ensemble WUSTL-EHMS 2020 dataset class imbalance XGBoost
在线阅读 下载PDF
耦合Encoder-Decoder的LSTM径流预报模型研究 被引量:14
13
作者 林康聆 陈华 +3 位作者 陈清勇 罗宇轩 刘峰 陈杰 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2022年第8期755-761,共7页
将长短期记忆神经网络(long short-term memory neural network,LSTM)与Encoder-Decoder结构耦合应用为LSTM-ED模型,并与LSTM人工智能径流预报模型进行比较。通过在闽江建溪流域进行应用,结果表明,相较于LSTM,LSTM-ED在检验期整体和各... 将长短期记忆神经网络(long short-term memory neural network,LSTM)与Encoder-Decoder结构耦合应用为LSTM-ED模型,并与LSTM人工智能径流预报模型进行比较。通过在闽江建溪流域进行应用,结果表明,相较于LSTM,LSTM-ED在检验期整体和各预见期具有更高的精度和稳定性,且对于典型洪水的预报洪峰误差更小,其独有的语义向量可以保持水文信息的连续性,预报径流过程不易受降雨波动干扰。2个模型的预报能力都与流域最大汇流时间密切相关,当预见期小于流域最大汇流时间时,2个模型都有很好的预报能力;当预见期大于流域最大汇流时间时,模型预报能力显著变差;当预见期远大于流域最大汇流时间时,2个模型都失去预报可靠性。 展开更多
关键词 径流预报 encoder-decoder结构 长短期记忆神经网络 深度学习 人工神经网络
原文传递
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
14
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5G slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
Low power Viterbi decoder design for low altitude adhoc networks
15
作者 FEI Yingying XIAO Chunlu +3 位作者 JING Wenhao MA Tianming WANG Jiahan JIN Jie 《High Technology Letters》 2025年第2期154-163,共10页
With the rapid development of low altitude economic industry,low altitude adhoc network technology has been getting more and more intensive attention.In the adhoc network protocol designed in this paper,the convolutio... With the rapid development of low altitude economic industry,low altitude adhoc network technology has been getting more and more intensive attention.In the adhoc network protocol designed in this paper,the convolutional code used is(3,1,7),and the design of a low power Viterbi decoder adapted to multi-rate variations is proposed.In the traditional Viterbi decoding method,the high complexity of path metric(PM)accumulation and Euclidean distance computation leads to the problems of low efficiency and large storage resources in the decoder.In this paper,an improved add compare select(ACS)algorithm,a generalized formula for branch metric(BM)based on Manhattan distance,and a method to reduce the accumulated PM for different Viterbi decoders are put forward.A simulation environment based on Vivado and Matlab to verify the accuracy and effectiveness of the proposed Viterbi decoder is also established.The experimental results show that the total power consumption is reduced by 15.58%while the decoding accuracy of the Viterbi decoder is guaranteed,which meets the design requirements of a low power Viterbi decoder. 展开更多
关键词 low altitude adhoc network Manhattan distance network protocol Viterbi decoder field programmable gate array(FPGA)
在线阅读 下载PDF
基于Encoder-Decoder注意力网络的异常驾驶行为在线识别方法 被引量:2
16
作者 唐坤 戴语琴 +2 位作者 徐永能 郭唐仪 邵飞 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第8期63-71,共9页
异常驾驶行为是车辆安全运行的重大威胁,其对人员与物资的安全高效投送造成严重危害。以低成本非接触式的手机多传感器数据为基础,通过对驾驶行为特性进行数据分析,提出一种融合Encoder-Decoder深度网络与Attention机制的异常驾驶行为... 异常驾驶行为是车辆安全运行的重大威胁,其对人员与物资的安全高效投送造成严重危害。以低成本非接触式的手机多传感器数据为基础,通过对驾驶行为特性进行数据分析,提出一种融合Encoder-Decoder深度网络与Attention机制的异常驾驶行为的在线识别方法。该方法由基于LSTM(long short-term memory)的Encoder-Decoder、Attention机制与基于SVM(support vector machine)的分类器3个模块构成。该系统识别方法包括:输入编码、注意力学习、特征解码、序列重构、残差计算与驾驶行为分类等6个步骤。该技术方法利用自然驾驶条件下所采集的手机传感器数据进行实验。实验结果表明:①手机多传感器数据融合方法对驾驶行为识别具备有效性;②异常驾驶行为必然会造成数据异常波动;③Attention机制有助于提升模型学习效果,对所提出模型的识别准确率F1-score为0.717,与经典同类模型比较,准确率得到显著提升;④对于汽车异常驾驶行为来说,SVM比Logistic与随机森林算法具有更优越的识别效果。 展开更多
关键词 异常驾驶 深度学习 编码器-解码器 长短时记忆网络 注意力机制
在线阅读 下载PDF
LSTM Encoder-Decoder方法预测设备剩余使用寿命 被引量:7
17
作者 赵志宏 李晴 +1 位作者 李乐豪 赵敬娇 《交通运输工程学报》 EI CSCD 北大核心 2021年第6期269-277,共9页
应用LSTM Encoder-Decoder提出了机械设备剩余使用寿命预测方法;对获取的传感器数据进行预处理,利用LSTM Encoder对数据序列进行编码,得到设备状态信息的中间表示,其中蕴含了设备状态的特征信息,利用LSTM Decoder对中间表示信息进行解码... 应用LSTM Encoder-Decoder提出了机械设备剩余使用寿命预测方法;对获取的传感器数据进行预处理,利用LSTM Encoder对数据序列进行编码,得到设备状态信息的中间表示,其中蕴含了设备状态的特征信息,利用LSTM Decoder对中间表示信息进行解码,利用解码后的信息预测剩余使用寿命;研究了LSTM Encoder-Decoder方法在公开的C-MAPSS数据集上的剩余使用寿命预测试验,与LSTM、D-LSTM等方法进行了对比试验;研究了不同滑动窗口大小对于剩余寿命预测结果的影响。研究结果表明:LSTM Encoder-Decoder方法的剩余使用寿命预测结果的评分函数值和均方根误差均优于LSTM、D-LSTM方法;在FD001子集上,LSTM Encoder-Decoder方法、LSTM方法和D-LSTM方法对应的均方根误差分别为11、12、16;当滑动窗口大小为30时,LSTM Encoder-Decoder方法在FD001~FD004子集对应的评分函数值分别为164、3 012、372、4 800,对应的均方根误差分别为11、20、14、22;当滑动窗口大小为40时,LSTM Encoder-Decoder方法在FD001~FD004子集对应的评分函数值分别为305、1 220、408、4 828,对应的均方根误差分别为14、16、15、19。可见,提出的LSTM Encoder-Decoder方法是一种有效的预测机械设备剩余使用寿命方法,并且滑动窗口大小对于剩余使用寿命预测结果存在一定的影响。 展开更多
关键词 剩余使用寿命预测 编码器-解码器 LSTM 深度学习 特征提取
原文传递
利用Encoder-Decoder框架的深度学习网络实现绕射波分离及成像 被引量:3
18
作者 马铭 包乾宗 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期56-64,共9页
利用单纯绕射波场实现地下地质异常体的识别具有坚实的理论基础,对应的实施方法得到了广泛研究,且有效地应用于实际勘探。但现有技术在微小尺度异常体成像方面收效甚微,相关研究多数以射线传播理论为基础,对于影响绕射波分离成像精度的... 利用单纯绕射波场实现地下地质异常体的识别具有坚实的理论基础,对应的实施方法得到了广泛研究,且有效地应用于实际勘探。但现有技术在微小尺度异常体成像方面收效甚微,相关研究多数以射线传播理论为基础,对于影响绕射波分离成像精度的因素分析并不完备。相较于反射波,由于存在不连续构造而产生的绕射波能量微弱并且相互干涉,同时环境干扰使得绕射波进一步湮没。因此,更高精度的波场分离及单独成像是现阶段基于绕射波超高分辨率处理、解释的重点研究方向。为此,首先针对地球物理勘探中地质异常体的准确定位,以携带高分辨率信息的绕射波为研究对象,系统分析在不同尺度、不同物性参数的异常体情况下绕射波的能量大小及形态特征,掌握绕射波与其他类型波叠加的具体形式;然后根据相应特征性质提出基于深度学习技术的绕射波分离成像方法,即利用Encoder-Decoder框架的空洞卷积网络捕获绕射波场特征,从而实现绕射波分离,基于速度连续性原则构建单纯绕射波场的偏移速度模型并完成最终成像。数据测试表明,该方法最终可满足微小地质异常体高精度识别的需求。 展开更多
关键词 绕射波分离成像 深度神经网络 encoder-decoder框架 方差最大范数
在线阅读 下载PDF
基于Encoder-Decoder网络的遥感影像道路提取方法 被引量:54
19
作者 贺浩 王仕成 +2 位作者 杨东方 王舒洋 刘星 《测绘学报》 EI CSCD 北大核心 2019年第3期330-338,共9页
针对道路目标特点,设计实现了用于遥感影像道路提取的Encoder-Decoder深度语义分割网络。首先,针对道路目标局部特征丰富、语义特征较为简单的特点,设计了较浅深度、分辨率较高的Encoder-Decoder网络结构,提高了分割网络的细节表示能力... 针对道路目标特点,设计实现了用于遥感影像道路提取的Encoder-Decoder深度语义分割网络。首先,针对道路目标局部特征丰富、语义特征较为简单的特点,设计了较浅深度、分辨率较高的Encoder-Decoder网络结构,提高了分割网络的细节表示能力。其次,针对遥感影像中道路目标所占像素比例较小的特点,改进了二分类交叉熵损失函数,解决了网络训练中正负样本严重失衡的问题。在大型道路提取数据集上的试验表明,所提方法召回率、精度和F1-score指标分别达到了83.9%、82.5%及82.9%,能够完整准确地提取遥感影像中的道路目标。所设计的Encoder-Decoder网络性能优良,且不需人工设计提取特征,因而具有良好的应用前景。 展开更多
关键词 遥感 道路提取 深度学习 语义分割 编解码网路
在线阅读 下载PDF
基于Encoder-Decoder LSTM的电梯制动滑移量预测方法研究 被引量:2
20
作者 苏万斌 江叶峰 +1 位作者 徐彪 易灿灿 《机械制造与自动化》 2022年第6期28-31,共4页
电梯曳引系统的可靠性是电梯安全性能评估中的重要部分,紧急制动滑移量是其重要反映指标,对滑移量进行时序预测能有利保证电梯安全,具有重要意义。采用结合Encoder-Decoder的LSTM模型学习电梯紧急制动滑移量的增长过程,进行多步预测来... 电梯曳引系统的可靠性是电梯安全性能评估中的重要部分,紧急制动滑移量是其重要反映指标,对滑移量进行时序预测能有利保证电梯安全,具有重要意义。采用结合Encoder-Decoder的LSTM模型学习电梯紧急制动滑移量的增长过程,进行多步预测来获得未来区间内滑移预测数据。通过与RNN和LSTM模型预测结果的对比,表明Encoder-Decoder LSTM模型针对电梯紧急制动滑移量的预测具有较好的精度,可以作为电梯曳引能力评估的重要手段。 展开更多
关键词 电梯 LSTM 编码器-解码器 滑移量 时间序列 多步预测
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部