Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi...Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.展开更多
In this paper, a modified FPGA scheme for the convolutional encoder and Viterbi decoder based on the IEEE 802.11a standards of WLAN is presented in OFDM baseband processing systems. The proposed design supports a gene...In this paper, a modified FPGA scheme for the convolutional encoder and Viterbi decoder based on the IEEE 802.11a standards of WLAN is presented in OFDM baseband processing systems. The proposed design supports a generic, robust and configurable Viterbi decoder with constraint length of 7, code rate of 1/2 and decoding depth of 36 symbols. The Viterbi decoder uses full-parallel structure to improve computational speed for the add-compare-select (ACS) modules, adopts optimal data storage mechanism to avoid overflow and employs three distributed RAM blocks to complete cyclic trace-back. It includes the core parts, for example, the state path measure computation, the preservation and transfer of the survivor path and trace-back decoding, etc. Compared to the general Viterbi decoder, this design can effectively decrease the 10% of chip logic elements, reduce 5% of power consumption, and increase the encoder and decoder working performance in the hardware implementation. Lastly, relevant simulation results using Verilog HDL language are verified based on a Xinlinx Virtex-II FPGA by ISE 7.1i. It is shown that the Viterbi decoder is capable of decoding (2, 1, 7) convolutional codes accurately with a throughput of 80 Mbps.展开更多
The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail...The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail. The mathematical mode including signal transmission, summing, receiving and recovering are established respectively. One of the main sources of Bit Error Rate (BER) of OCDMA system based on FBGs is the unevenness of signal power spectrum, which leads to the chip powers unequal with each other. The Signal to Interfere Ratio (SIR) and BER performance of the system are studied and simulated at the case with uneven distribution of chips' powers.展开更多
Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding ...Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.展开更多
The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are i...The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are inevitably of selectivity ascribing to the restriction of contextual reasons.The translator as the intermediary agent connects the original author(encoder)and the target readers(decoder),shouldering the dual duties of the decoder and the encoder,for which his subjectivity is irrevocably manipulated by the selectivity of encoding and decoding.展开更多
Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and...Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data.展开更多
基金supported in part by the National Natural Science Foundation of China under Grant 6226070954Jiangxi Provincial Key R&D Programme under Grant 20244BBG73002.
文摘Rail surface damage is a critical component of high-speed railway infrastructure,directly affecting train operational stability and safety.Existing methods face limitations in accuracy and speed for small-sample,multi-category,and multi-scale target segmentation tasks.To address these challenges,this paper proposes Pyramid-MixNet,an intelligent segmentation model for high-speed rail surface damage,leveraging dataset construction and expansion alongside a feature pyramid-based encoder-decoder network with multi-attention mechanisms.The encoding net-work integrates Spatial Reduction Masked Multi-Head Attention(SRMMHA)to enhance global feature extraction while reducing trainable parameters.The decoding network incorporates Mix-Attention(MA),enabling multi-scale structural understanding and cross-scale token group correlation learning.Experimental results demonstrate that the proposed method achieves 62.17%average segmentation accuracy,80.28%Damage Dice Coefficient,and 56.83 FPS,meeting real-time detection requirements.The model’s high accuracy and scene adaptability significantly improve the detection of small-scale and complex multi-scale rail damage,offering practical value for real-time monitoring in high-speed railway maintenance systems.
文摘In this paper, a modified FPGA scheme for the convolutional encoder and Viterbi decoder based on the IEEE 802.11a standards of WLAN is presented in OFDM baseband processing systems. The proposed design supports a generic, robust and configurable Viterbi decoder with constraint length of 7, code rate of 1/2 and decoding depth of 36 symbols. The Viterbi decoder uses full-parallel structure to improve computational speed for the add-compare-select (ACS) modules, adopts optimal data storage mechanism to avoid overflow and employs three distributed RAM blocks to complete cyclic trace-back. It includes the core parts, for example, the state path measure computation, the preservation and transfer of the survivor path and trace-back decoding, etc. Compared to the general Viterbi decoder, this design can effectively decrease the 10% of chip logic elements, reduce 5% of power consumption, and increase the encoder and decoder working performance in the hardware implementation. Lastly, relevant simulation results using Verilog HDL language are verified based on a Xinlinx Virtex-II FPGA by ISE 7.1i. It is shown that the Viterbi decoder is capable of decoding (2, 1, 7) convolutional codes accurately with a throughput of 80 Mbps.
基金Supported by the Natural Science Research Foundation of Jiangsu Higher-Learning Insti-tution (No.04jkb510057).
文摘The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail. The mathematical mode including signal transmission, summing, receiving and recovering are established respectively. One of the main sources of Bit Error Rate (BER) of OCDMA system based on FBGs is the unevenness of signal power spectrum, which leads to the chip powers unequal with each other. The Signal to Interfere Ratio (SIR) and BER performance of the system are studied and simulated at the case with uneven distribution of chips' powers.
基金supported by Natural Science Foundation Programme of Gansu Province(No.24JRRA231)National Natural Science Foundation of China(No.62061023)Gansu Provincial Science and Technology Plan Key Research and Development Program Project(No.24YFFA024).
文摘Despite its remarkable performance on natural images,the segment anything model(SAM)lacks domain-specific information in medical imaging.and faces the challenge of losing local multi-scale information in the encoding phase.This paper presents a medical image segmentation model based on SAM with a local multi-scale feature encoder(LMSFE-SAM)to address the issues above.Firstly,based on the SAM,a local multi-scale feature encoder is introduced to improve the representation of features within local receptive field,thereby supplying the Vision Transformer(ViT)branch in SAM with enriched local multi-scale contextual information.At the same time,a multiaxial Hadamard product module(MHPM)is incorporated into the local multi-scale feature encoder in a lightweight manner to reduce the quadratic complexity and noise interference.Subsequently,a cross-branch balancing adapter is designed to balance the local and global information between the local multi-scale feature encoder and the ViT encoder in SAM.Finally,to obtain smaller input image size and to mitigate overlapping in patch embeddings,the size of the input image is reduced from 1024×1024 pixels to 256×256 pixels,and a multidimensional information adaptation component is developed,which includes feature adapters,position adapters,and channel-spatial adapters.This component effectively integrates the information from small-sized medical images into SAM,enhancing its suitability for clinical deployment.The proposed model demonstrates an average enhancement ranging from 0.0387 to 0.3191 across six objective evaluation metrics on BUSI,DDTI,and TN3K datasets compared to eight other representative image segmentation models.This significantly enhances the performance of the SAM on medical images,providing clinicians with a powerful tool in clinical diagnosis.
文摘The translation activity is a process of the interlinguistic transmission of information realized by the information encoding and decoding.Encoding and decoding,cognitive practices operated in objective contexts,are inevitably of selectivity ascribing to the restriction of contextual reasons.The translator as the intermediary agent connects the original author(encoder)and the target readers(decoder),shouldering the dual duties of the decoder and the encoder,for which his subjectivity is irrevocably manipulated by the selectivity of encoding and decoding.
基金This work was supported by the National Key Research and Development Program of China(2018YFC2001302)National Natural Science Foundation of China(91520202)+2 种基金Chinese Academy of Sciences Scientific Equipment Development Project(YJKYYQ20170050)Beijing Municipal Science and Technology Commission(Z181100008918010)Youth Innovation Promotion Association of Chinese Academy of Sciences,and Strategic Priority Research Program of Chinese Academy of Sciences(XDB32040200).
文摘Brain encoding and decoding via functional magnetic resonance imaging(fMRI)are two important aspects of visual perception neuroscience.Although previous researchers have made significant advances in brain encoding and decoding models,existing methods still require improvement using advanced machine learning techniques.For example,traditional methods usually build the encoding and decoding models separately,and are prone to overfitting on a small dataset.In fact,effectively unifying the encoding and decoding procedures may allow for more accurate predictions.In this paper,we first review the existing encoding and decoding methods and discuss the potential advantages of a“bidirectional”modeling strategy.Next,we show that there are correspondences between deep neural networks and human visual streams in terms of the architecture and computational rules.Furthermore,deep generative models(e.g.,variational autoencoders(VAEs)and generative adversarial networks(GANs))have produced promising results in studies on brain encoding and decoding.Finally,we propose that the dual learning method,which was originally designed for machine translation tasks,could help to improve the performance of encoding and decoding models by leveraging large-scale unpaired data.