Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target application.Conventional PCMs such as G...Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target application.Conventional PCMs such as Ge-Sb-Te(GST)and Ge-Sb-Se-Te(GSST)rely on melt-quench and high temperature annealing processes to change the organization of the molecules in the materials’crystal.Such a reorganization leads to different optical,electrical,and thermal properties which can be exploited to implement photonic memory cells that are able to store the data at different resistance or optical transmission levels.Despite the great promise of conventional PCMs for realizing reconfigurable photonic memories,their slow and extremely power-hungry thermal mechanisms make scaling the systems based on such devices challenging.In addition,such materials do not offer a stable multi-level response over a long period of time.To address these shortcomings,the research carried out in this study shows the proof of concept to implement next-generation photonic memory cells based on two-dimensional(2D)birefringence PCMs such as SnSe,which offer anisotropic optical properties that can be switched ferroelectrically.We demonstrate that by leveraging the ultrafast and low-power crystallographic direction change of the material,the optical polarization state of the input optical signal can be changed.This enables the implementation of next-generation high-speed polarization-encodable photonic memory cells for future photonic computing systems.Compared to the conventional PCMs,the proposed SnSe-based photonic memory cells offer an ultrafast switching and low-loss optical response relying on ferroelectric property of SnSe to encode the data on the polarization state of the input optical signal.Such a polarization encoding scheme also reduces memory read-out errors and alleviates the scalability limitations due to the optical insertion loss often seen in optical transmission encoding.展开更多
With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions...With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.展开更多
Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited t...Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.展开更多
Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding ...Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types.To achieve direct communication between the devices with different quantum encoding types,in this paper,we propose encoding conversion schemes between the polarization bases(rectilinear,diagonal and circular bases)and the time-bin phase bases(two phase bases and time-bin basis)and design the quantum encoding converters.The theoretical analysis of the encoding conversion schemes is given in detail,and the basis correspondence of encoding conversion and the property of bit flip are revealed.The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter.Since no optical switches are used in our scheme,the converter can be operated with high speed.The converters can also be modularized,which may be utilized to realize miniaturization in the future.展开更多
High-performance terahertz(THz)logic gate devices are crucial components for signal processing and modulation,playing a significant role in the application of THz communication and imaging.Here,we propose a THz broadb...High-performance terahertz(THz)logic gate devices are crucial components for signal processing and modulation,playing a significant role in the application of THz communication and imaging.Here,we propose a THz broadband NOR logic encoder based on a graphene-metal hybrid metasurface.The unit structure consists of two symmetrical dual-gap metal split-ring resonators(DSRRs)arranged in a staggered configuration,with graphene strips embedded in their gaps.The NOR logic gate metadevice is controlled by the bias voltages independently applied to the two electrodes.Experiments show that when the bias voltages are applied to both electrodes,the metadevice achieves the NOR logic gate within a 0.52 THz bandwidth,with an average modulation depth above 80%.The experimental results match well with theoretical simulations.Additionally,the strong near-field coupling induced by the staggered DSRRs causes redshift at both LC resonance and dipole resonance.This phenomenon was demonstrated by coupled mode theory.Besides,we analyze the surface current distribution at resonances and propose four equivalent circuit models to elucidate the physical mechanisms of modulation under distinct loaded voltage conditions.The results not only advance modulation and logic gate designs for THz communication but also demonstrate significant potential applications in 6G networks,THz imaging,and radar systems.展开更多
Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to comm...Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to communication security.This study introduces a blockchain-based covert communication model utilizing dynamic Base-K encoding.The proposed encoding scheme utilizes the input address sequence to determine K to encode the secret message and determines the order of transactions based on K,thus ensuring effective concealment of the message.The dynamic encoding parameters enhance flexibility and address issues related to identical transaction amounts for the same secret message.Experimental results demonstrate that the proposed method maintains smooth communication and low susceptibility to tampering,achieving commendable concealment and embedding rates.展开更多
Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the st...Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats.展开更多
High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal im...High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal importance. As critical rotating mechanical components of the transmission system, bearings make their fault diagnosis a topic of extensive attention. This paper provides a systematic review of image encoding-based bearing fault diagnosis methods tailored to the condition monitoring of HSTs. First, it categorizes the image encoding techniques applied in the field of bearing fault diagnosis. Then, a review of state-of-the-art studies has been presented, encompassing both monomodal image conversion and multimodal image fusion approaches. Finally, it highlights current challenges and proposes future research directions to advance intelligent fault diagnosis in HSTs, aiming to provide a valuable reference for researchers and engineers in the field of intelligent operation and maintenance.展开更多
In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibration...In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibrations and the magnetic encoders are too sensitive to magnetic field density,this paper designs a new differential encoder based on the grating eddy-current measurement principle,abbreviated as differential grating eddy-current encoder(DGECE).The grating eddy-current of DGECE consists of a circular array of trapezoidal reflection conductors and 16 trapezoidal coils with a special structure to form a differential relationship,which are respectively located on the code plate and the readout plate designed by a printed circuit board.The differential structure of DGECE corrects the common mode interference and the amplitude distortion due to the assembly to some extent,possesses a certain anti-interference capability,and greatly simplifies the regularization algorithm of the original data.By means of the corresponding readout circuit and demodulation algorithm,the DGECE can convert the periodic impedance variation of 16 coils into an angular output within the 360°cycle.Due to its simple manufacturing process and certain interference immunity,DGECE is easy to be integrated and mass-produced as well as applicable in the industrial spindles,especially in robot joints.This paper presents the measurement principle,implementation methods,and results of the experiment of the DGECE.The experimental results show that the accuracy of the DGECE can reach 0.237%and the measurement standard deviation can reach±0.14°within360°cycle.展开更多
In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the e...In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the experiment of the emotion classification method based on the encoder.The experimental analysis shows that the encoder has higher precision than other encoders in emotion classification.It is hoped that this analysis can provide some reference for the emotion classification under the current intelligent algorithm mode.展开更多
The Gaussian phase distribution approximation enables analysis of restricted diffusion encoded by general gradient waveforms but fails to account for the diffraction-like features that may occur for simple pore geomet...The Gaussian phase distribution approximation enables analysis of restricted diffusion encoded by general gradient waveforms but fails to account for the diffraction-like features that may occur for simple pore geometries.We investigate the range of validity of the approximation by random walk simulations of restricted diffusion in a cylinder using isotropic diffusion encoding sequences as well as conventional single gradient pulse pairs and oscillating gradient waveforms.The results show that clear deviations from the approximation may be observed at relative signal attenuations below 0.1 for onedimensional sequences with few oscillation periods.Increasing the encoding dimensionality and/or number of oscillations while extending the total duration of the waveform diminishes the non-Gaussian effects while preserving the low apparent diffusivities characteristic of restriction.展开更多
The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character rese...The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character resemblance,and semantic discrepancies.However,existing methods often struggle to fully address these types of errors,impacting the overall correction accuracy.This paper introduces a multi-modal feature encoder designed to efficiently extract features from three distinct modalities:pinyin,semantics,and character morphology.Unlike previous methods that rely on direct fusion or fixed-weight summation to integrate multi-modal information,our approach employs a multi-head attention mechanism to focuse more on relevant modal information while dis-regarding less pertinent data.To prevent issues such as gradient explosion or vanishing,the model incorporates a residual connection of the original text vector for fine-tuning.This approach ensures robust model performance by maintaining essential linguistic details throughout the correction process.Experimental evaluations on the SIGHAN benchmark dataset demonstrate that the pro-posed model outperforms baseline approaches across various metrics and datasets,confirming its effectiveness and feasibility.展开更多
Reach-to-grasp movements require integrating information on both object location and grip type,but how these elements are planned and to what extent they interact remains unclear.We designed a new experimental paradig...Reach-to-grasp movements require integrating information on both object location and grip type,but how these elements are planned and to what extent they interact remains unclear.We designed a new experimental paradigm in which monkeys sequentially received reach and grasp cues with delays,requiring them to retain and integrate both cues to grasp the goal object with appropriate hand gestures.Neural activity in the dorsal premotor cortex(PMd)revealed that reach and grasp were similarly represented yet not independent.Upon receiving the second cue,the PMd continued encoding the first,but over half of the neurons displayed incongruent modulations:enhanced,attenuated,or even reversed.Population-level analysis showed significant changes in encoding structure,forming distinct neural patterns.Leveraging canonical correlation analysis,we identified a shared subspace preserving the initial cue’s encoding,contributed by both congruent and incongruent neurons.Together,these findings reveal a novel perspective on the interactive planning of reach and grasp within the PMd,providing insights into potential applications for brain–machine interfaces.展开更多
This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi...This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison.展开更多
Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging f...Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging from organic dyes to genetically encoded proteins and nanomaterials, provide unparalleled specificity, sensitivity, and multiplexing capabilities. However, challenges such as brightness, photobleaching, biocompatibility, and emission range continue to drive innovation in probe design and application. This special issue, comprising four review papers and seven original research studies, highlights cutting-edge advancements in fluorescent probe technologies and their transformative roles in super-resolution imaging, in vivo diagnostics, and cancer therapeutics.展开更多
基金supported by the National Science Foundation(NSF)(Nos.CCF-2006788 and CNS-2046226)L.H.C.and J.Y.thank the support of Heising-Simons Faculty Fellowship.
文摘Integration of phase-change materials(PCMs)created a unique opportunity to implement reconfigurable photonics devices that their performance can be tuned depending on the target application.Conventional PCMs such as Ge-Sb-Te(GST)and Ge-Sb-Se-Te(GSST)rely on melt-quench and high temperature annealing processes to change the organization of the molecules in the materials’crystal.Such a reorganization leads to different optical,electrical,and thermal properties which can be exploited to implement photonic memory cells that are able to store the data at different resistance or optical transmission levels.Despite the great promise of conventional PCMs for realizing reconfigurable photonic memories,their slow and extremely power-hungry thermal mechanisms make scaling the systems based on such devices challenging.In addition,such materials do not offer a stable multi-level response over a long period of time.To address these shortcomings,the research carried out in this study shows the proof of concept to implement next-generation photonic memory cells based on two-dimensional(2D)birefringence PCMs such as SnSe,which offer anisotropic optical properties that can be switched ferroelectrically.We demonstrate that by leveraging the ultrafast and low-power crystallographic direction change of the material,the optical polarization state of the input optical signal can be changed.This enables the implementation of next-generation high-speed polarization-encodable photonic memory cells for future photonic computing systems.Compared to the conventional PCMs,the proposed SnSe-based photonic memory cells offer an ultrafast switching and low-loss optical response relying on ferroelectric property of SnSe to encode the data on the polarization state of the input optical signal.Such a polarization encoding scheme also reduces memory read-out errors and alleviates the scalability limitations due to the optical insertion loss often seen in optical transmission encoding.
文摘With the rapid expansion of social media,analyzing emotions and their causes in texts has gained significant importance.Emotion-cause pair extraction enables the identification of causal relationships between emotions and their triggers within a text,facilitating a deeper understanding of expressed sentiments and their underlying reasons.This comprehension is crucial for making informed strategic decisions in various business and societal contexts.However,recent research approaches employing multi-task learning frameworks for modeling often face challenges such as the inability to simultaneouslymodel extracted features and their interactions,or inconsistencies in label prediction between emotion-cause pair extraction and independent assistant tasks like emotion and cause extraction.To address these issues,this study proposes an emotion-cause pair extraction methodology that incorporates joint feature encoding and task alignment mechanisms.The model consists of two primary components:First,joint feature encoding simultaneously generates features for emotion-cause pairs and clauses,enhancing feature interactions between emotion clauses,cause clauses,and emotion-cause pairs.Second,the task alignment technique is applied to reduce the labeling distance between emotion-cause pair extraction and the two assistant tasks,capturing deep semantic information interactions among tasks.The proposed method is evaluated on a Chinese benchmark corpus using 10-fold cross-validation,assessing key performance metrics such as precision,recall,and F1 score.Experimental results demonstrate that the model achieves an F1 score of 76.05%,surpassing the state-of-the-art by 1.03%.The proposed model exhibits significant improvements in emotion-cause pair extraction(ECPE)and cause extraction(CE)compared to existing methods,validating its effectiveness.This research introduces a novel approach based on joint feature encoding and task alignment mechanisms,contributing to advancements in emotion-cause pair extraction.However,the study’s limitation lies in the data sources,potentially restricting the generalizability of the findings.
文摘Retinal blood vessel segmentation is crucial for diagnosing ocular and cardiovascular diseases.Although the introduction of U-Net in 2015 by Olaf Ronneberger significantly advanced this field,yet issues like limited training data,imbalance data distribution,and inadequate feature extraction persist,hindering both the segmentation performance and optimal model generalization.Addressing these critical issues,the DEFFA-Unet is proposed featuring an additional encoder to process domain-invariant pre-processed inputs,thereby improving both richer feature encoding and enhanced model generalization.A feature filtering fusion module is developed to ensure the precise feature filtering and robust hybrid feature fusion.In response to the task-specific need for higher precision where false positives are very costly,traditional skip connections are replaced with the attention-guided feature reconstructing fusion module.Additionally,innovative data augmentation and balancing methods are proposed to counter data scarcity and distribution imbalance,further boosting the robustness and generalization of the model.With a comprehensive suite of evaluation metrics,extensive validations on four benchmark datasets(DRIVE,CHASEDB1,STARE,and HRF)and an SLO dataset(IOSTAR),demonstrate the proposed method’s superiority over both baseline and state-of-the-art models.Particularly the proposed method significantly outperforms the compared methods in cross-validation model generalization.
基金supported by the National Natural Science Foundation of China(Grant No.62001440).
文摘Quantum communication networks,such as quantum key distribution(QKD)networks,typically employ the measurement-resend mechanism between two users using quantum communication devices based on different quantum encoding types.To achieve direct communication between the devices with different quantum encoding types,in this paper,we propose encoding conversion schemes between the polarization bases(rectilinear,diagonal and circular bases)and the time-bin phase bases(two phase bases and time-bin basis)and design the quantum encoding converters.The theoretical analysis of the encoding conversion schemes is given in detail,and the basis correspondence of encoding conversion and the property of bit flip are revealed.The conversion relationship between polarization bases and time-bin phase bases can be easily selected by controlling a phase shifter.Since no optical switches are used in our scheme,the converter can be operated with high speed.The converters can also be modularized,which may be utilized to realize miniaturization in the future.
基金supported by the National Natural Science Foundation of China(Grant Nos.62005058 and 62365006)the Natural Science Foundation of Guangxi,China(Grant No.2020GXNSFBA238012)+2 种基金the China Postdoctoral Science Foundation(Grant No.2020M683726)the Innovation Project of Guangxi Graduate Education(Grant Nos.YCSW2024345 and YCBZ2025157)the Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Grant No.YQ24101).
文摘High-performance terahertz(THz)logic gate devices are crucial components for signal processing and modulation,playing a significant role in the application of THz communication and imaging.Here,we propose a THz broadband NOR logic encoder based on a graphene-metal hybrid metasurface.The unit structure consists of two symmetrical dual-gap metal split-ring resonators(DSRRs)arranged in a staggered configuration,with graphene strips embedded in their gaps.The NOR logic gate metadevice is controlled by the bias voltages independently applied to the two electrodes.Experiments show that when the bias voltages are applied to both electrodes,the metadevice achieves the NOR logic gate within a 0.52 THz bandwidth,with an average modulation depth above 80%.The experimental results match well with theoretical simulations.Additionally,the strong near-field coupling induced by the staggered DSRRs causes redshift at both LC resonance and dipole resonance.This phenomenon was demonstrated by coupled mode theory.Besides,we analyze the surface current distribution at resonances and propose four equivalent circuit models to elucidate the physical mechanisms of modulation under distinct loaded voltage conditions.The results not only advance modulation and logic gate designs for THz communication but also demonstrate significant potential applications in 6G networks,THz imaging,and radar systems.
基金sponsored by the National Natural Science Foundation of China No.U24B201114,6247070859,62302114 and No.62172353Innovation Fund Program of the Engineering Research Center for Integration and Application of Digital Learning Technology of Ministry of Education No.1331007 and No.1311022Natural Science Foundation of Guangdong Province No.2024A1515010177.
文摘Blockchain,as a distributed ledger,inherently possesses tamper-resistant capabilities,creating a natural channel for covert communication.However,the immutable nature of data storage might introduce challenges to communication security.This study introduces a blockchain-based covert communication model utilizing dynamic Base-K encoding.The proposed encoding scheme utilizes the input address sequence to determine K to encode the secret message and determines the order of transactions based on K,thus ensuring effective concealment of the message.The dynamic encoding parameters enhance flexibility and address issues related to identical transaction amounts for the same secret message.Experimental results demonstrate that the proposed method maintains smooth communication and low susceptibility to tampering,achieving commendable concealment and embedding rates.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2025R319),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia and Prince Sultan University for covering the article processing charges(APC)associated with this publicationResearchers Supporting Project Number(RSPD2025R1107),King Saud University,Riyadh,Saudi Arabia.
文摘Healthcare networks prove to be an urgent issue in terms of intrusion detection due to the critical consequences of cyber threats and the extreme sensitivity of medical information.The proposed Auto-Stack ID in the study is a stacked ensemble of encoder-enhanced auctions that can be used to improve intrusion detection in healthcare networks.TheWUSTL-EHMS 2020 dataset trains and evaluates themodel,constituting an imbalanced class distribution(87.46% normal traffic and 12.53% intrusion attacks).To address this imbalance,the study balances the effect of training Bias through Stratified K-fold cross-validation(K=5),so that each class is represented similarly on training and validation splits.Second,the Auto-Stack ID method combines many base classifiers such as TabNet,LightGBM,Gaussian Naive Bayes,Histogram-Based Gradient Boosting(HGB),and Logistic Regression.We apply a two-stage training process based on the first stage,where we have base classifiers that predict out-of-fold(OOF)predictions,which we use as inputs for the second-stage meta-learner XGBoost.The meta-learner learns to refine predictions to capture complicated interactions between base models,thus improving detection accuracy without introducing bias,overfitting,or requiring domain knowledge of the meta-data.In addition,the auto-stack ID model got 98.41% accuracy and 93.45%F1 score,better than individual classifiers.It can identify intrusions due to its 90.55% recall and 96.53% precision with minimal false positives.These findings identify its suitability in ensuring healthcare networks’security through ensemble learning.Ongoing efforts will be deployed in real time to improve response to evolving threats.
基金supported by the Fundamental Research Funds for the Central Universities(No.2024JBZX027)the National Natural Science Foundation of China(No.52375078).
文摘High-Speed Trains (HSTs) have emerged as a mainstream mode of transportation in China, owing to their exceptional safety and efficiency. Ensuring the reliable operation of HSTs is of paramount economic and societal importance. As critical rotating mechanical components of the transmission system, bearings make their fault diagnosis a topic of extensive attention. This paper provides a systematic review of image encoding-based bearing fault diagnosis methods tailored to the condition monitoring of HSTs. First, it categorizes the image encoding techniques applied in the field of bearing fault diagnosis. Then, a review of state-of-the-art studies has been presented, encompassing both monomodal image conversion and multimodal image fusion approaches. Finally, it highlights current challenges and proposes future research directions to advance intelligent fault diagnosis in HSTs, aiming to provide a valuable reference for researchers and engineers in the field of intelligent operation and maintenance.
基金the Biomedical Science and Technology Support Special Project of Shanghai Science and Technology Committee(No.20S31908300)。
文摘In response to the shortcomings of the common encoders in the industry,of which the photoelectric encoders have a poor anti-interference ability in harsh industrial environments with water,oil,dust,or strong vibrations and the magnetic encoders are too sensitive to magnetic field density,this paper designs a new differential encoder based on the grating eddy-current measurement principle,abbreviated as differential grating eddy-current encoder(DGECE).The grating eddy-current of DGECE consists of a circular array of trapezoidal reflection conductors and 16 trapezoidal coils with a special structure to form a differential relationship,which are respectively located on the code plate and the readout plate designed by a printed circuit board.The differential structure of DGECE corrects the common mode interference and the amplitude distortion due to the assembly to some extent,possesses a certain anti-interference capability,and greatly simplifies the regularization algorithm of the original data.By means of the corresponding readout circuit and demodulation algorithm,the DGECE can convert the periodic impedance variation of 16 coils into an angular output within the 360°cycle.Due to its simple manufacturing process and certain interference immunity,DGECE is easy to be integrated and mass-produced as well as applicable in the industrial spindles,especially in robot joints.This paper presents the measurement principle,implementation methods,and results of the experiment of the DGECE.The experimental results show that the accuracy of the DGECE can reach 0.237%and the measurement standard deviation can reach±0.14°within360°cycle.
文摘In this paper,the sentiment classification method of multimodal adversarial autoencoder is studied.This paper includes the introduction of the multimodal adversarial autoencoder emotion classification method and the experiment of the emotion classification method based on the encoder.The experimental analysis shows that the encoder has higher precision than other encoders in emotion classification.It is hoped that this analysis can provide some reference for the emotion classification under the current intelligent algorithm mode.
基金financially supported by the Swedish Research Council(2022-04422_VR)。
文摘The Gaussian phase distribution approximation enables analysis of restricted diffusion encoded by general gradient waveforms but fails to account for the diffraction-like features that may occur for simple pore geometries.We investigate the range of validity of the approximation by random walk simulations of restricted diffusion in a cylinder using isotropic diffusion encoding sequences as well as conventional single gradient pulse pairs and oscillating gradient waveforms.The results show that clear deviations from the approximation may be observed at relative signal attenuations below 0.1 for onedimensional sequences with few oscillation periods.Increasing the encoding dimensionality and/or number of oscillations while extending the total duration of the waveform diminishes the non-Gaussian effects while preserving the low apparent diffusivities characteristic of restriction.
基金Supported by the National Natural Science Foundation of China(No.61472256,61170277)the Hujiang Foundation(No.A14006).
文摘The primary objective of Chinese spelling correction(CSC)is to detect and correct erroneous characters in Chinese text,which can result from various factors,such as inaccuracies in pinyin representation,character resemblance,and semantic discrepancies.However,existing methods often struggle to fully address these types of errors,impacting the overall correction accuracy.This paper introduces a multi-modal feature encoder designed to efficiently extract features from three distinct modalities:pinyin,semantics,and character morphology.Unlike previous methods that rely on direct fusion or fixed-weight summation to integrate multi-modal information,our approach employs a multi-head attention mechanism to focuse more on relevant modal information while dis-regarding less pertinent data.To prevent issues such as gradient explosion or vanishing,the model incorporates a residual connection of the original text vector for fine-tuning.This approach ensures robust model performance by maintaining essential linguistic details throughout the correction process.Experimental evaluations on the SIGHAN benchmark dataset demonstrate that the pro-posed model outperforms baseline approaches across various metrics and datasets,confirming its effectiveness and feasibility.
基金supported by STI 2030-Major Projects(2022ZD0208903)the National Natural Science Foundation of China(62336007)+3 种基金the Natural Science Foundation of Shandong Province(ZR2024QH582)the Pioneer R&D Program of Zhejiang Province(2024C03001)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(SN-ZJU-SIAS-002)the Fundamental Research Funds for the Central Universities(2024ZFJH01-01).
文摘Reach-to-grasp movements require integrating information on both object location and grip type,but how these elements are planned and to what extent they interact remains unclear.We designed a new experimental paradigm in which monkeys sequentially received reach and grasp cues with delays,requiring them to retain and integrate both cues to grasp the goal object with appropriate hand gestures.Neural activity in the dorsal premotor cortex(PMd)revealed that reach and grasp were similarly represented yet not independent.Upon receiving the second cue,the PMd continued encoding the first,but over half of the neurons displayed incongruent modulations:enhanced,attenuated,or even reversed.Population-level analysis showed significant changes in encoding structure,forming distinct neural patterns.Leveraging canonical correlation analysis,we identified a shared subspace preserving the initial cue’s encoding,contributed by both congruent and incongruent neurons.Together,these findings reveal a novel perspective on the interactive planning of reach and grasp within the PMd,providing insights into potential applications for brain–machine interfaces.
基金funded by the Deanship of Research and Graduate Studies at King Khalid University through small group research under grant number RGP1/278/45.
文摘This paper introduces a novel method for medical image retrieval and classification by integrating a multi-scale encoding mechanism with Vision Transformer(ViT)architectures and a dynamic multi-loss function.The multi-scale encoding significantly enhances the model’s ability to capture both fine-grained and global features,while the dynamic loss function adapts during training to optimize classification accuracy and retrieval performance.Our approach was evaluated on the ISIC-2018 and ChestX-ray14 datasets,yielding notable improvements.Specifically,on the ISIC-2018 dataset,our method achieves an F1-Score improvement of+4.84% compared to the standard ViT,with a precision increase of+5.46% for melanoma(MEL).On the ChestX-ray14 dataset,the method delivers an F1-Score improvement of 5.3%over the conventional ViT,with precision gains of+5.0% for pneumonia(PNEU)and+5.4%for fibrosis(FIB).Experimental results demonstrate that our approach outperforms traditional CNN-based models and existing ViT variants,particularly in retrieving relevant medical cases and enhancing diagnostic accuracy.These findings highlight the potential of the proposedmethod for large-scalemedical image analysis,offering improved tools for clinical decision-making through superior classification and case comparison.
文摘Fluorescent probes have revolutionized optical imaging and biosensing by enabling real-time visualization, quantification, and tracking of biological processes at molecular and cellular levels. These probes, ranging from organic dyes to genetically encoded proteins and nanomaterials, provide unparalleled specificity, sensitivity, and multiplexing capabilities. However, challenges such as brightness, photobleaching, biocompatibility, and emission range continue to drive innovation in probe design and application. This special issue, comprising four review papers and seven original research studies, highlights cutting-edge advancements in fluorescent probe technologies and their transformative roles in super-resolution imaging, in vivo diagnostics, and cancer therapeutics.