期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Binary ligand strategy toward interweaved encapsulation-nanotubes structured electrocatalyst for proton exchange membrane fuel cell 被引量:2
1
作者 Qingbin Liu Li Xu +1 位作者 Shizhen Liu Zhonghua Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期129-135,I0005,共8页
Hierarchically porous architecture of ir on-nitroge n-carb on(Fe-N-C)for oxyge n reducti on reaction(ORR)is highly desired towards efficient mass transfer in the fuel cell device manner.Herein,we reported a binary lig... Hierarchically porous architecture of ir on-nitroge n-carb on(Fe-N-C)for oxyge n reducti on reaction(ORR)is highly desired towards efficient mass transfer in the fuel cell device manner.Herein,we reported a binary ligand strategy to prepare zeolitic imidazolate frameworks(ZIFs)-derived precursors,wherein the addition of secondary ligand endows precursors with the capabilities to transform into porously interweaved encapsulation-nanotubes structured composites after calcination.The optimal catalyst,i.e.,termed as Fe_(6)-M/C-3,exhibits excellent durability with 88.8%current retention after 50,000 seconds in 0.1 M HClO_(4)solution by virtue of nanoparticles-encapsulation features,which is more positive than the benchmark commercial 20 wt%Pt/C catalyst.Moreover,a promising maximum power density of Fe_(6)-M/C-3 as cathode catalyst was also dem on strated in proton exchange membrane fuel cells(PEMFCs)measurements.Therefore,this binary ligand approach to the fabrication of hierarchically porous structures would also have significant implications for various other electrochemical reactions. 展开更多
关键词 Oxygen reduction reaction Binary ligand strategy Interweaved encapsulation-nanotubes architecture Proton exchange membrane fuel cells
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部