The preparation of immobilized enzyme with excellent performance is one of the difficulties that restrict the application of enzyme catalysis technology.Here,Candida rugosa lipase(CRL)was firstly adsorbed on the surfa...The preparation of immobilized enzyme with excellent performance is one of the difficulties that restrict the application of enzyme catalysis technology.Here,Candida rugosa lipase(CRL)was firstly adsorbed on the surface of magnetic zeolitic imidazolate framework-8(ZIF-8)nanospheres,which was further encapsulated with a mesoporous SiO_(2)nano-membrane formed by tetraethyl orthosilicate(TEOS)polycondensation.Consequently,lipase could be firmly immobilized on carrier surface by physical binding rather than chemical binding,which did not damage the active conformation of enzyme.There were mesopores on the silica nano-membrane,which could improve the accessibility of enzyme and its apparent catalytic activity.Moreover,silica membrane encapsulation could also improve the stability of enzyme,suggesting an effective enzyme immobilization strategy.It showed that TEOS amount and the encapsulation time had significant effects on the thickness of silica membrane and the enzyme activity.The analysis in enzyme activity and protein secondary structure showed that lipase encapsulated in silica membrane retained the active conformation to the greatest extent.Compared with the adsorbed lipase,the encapsulated lipase increased its thermostability by 3 times and resistance to chemical denaturants by 7 times.The relative enzyme activity remained around 80%after 8 repetitions,while the adsorbed lipase only remained at7.3%.展开更多
Single-molecule junctions are building blocks for constructing molecular devices.However,intermolecular interactions like winding bring additional interference among the surrounding molecules,which inhibits the intrin...Single-molecule junctions are building blocks for constructing molecular devices.However,intermolecular interactions like winding bring additional interference among the surrounding molecules,which inhibits the intrinsic coherent transport through single-molecule junctions.Here,we employed a nanocavity(dimethoxypillar[5]arene,DMP[5]),which is analogous to electric cables,to confine the conformation of flexible chains(1,8-diaminooctane,DAO)via host-vip interaction.Single-molecule conductance measurements indicate that the conductance of DAO encapsulated with DMP[5]is as high as that of pure DAO,as reproduced by theoretical simulations.Intriguingly,the molecular lengths of the DAO encapsulated with DMP[5]increase from 1.13 nm to 1.46 nm compared with the pure DAO,indicating that DMP[5]keeps DAO upright-standing via the confinement effect.This work provides a new strategy to decouple the intermolecular interaction by employing an insulating sheath,enabling the high-density integration of single-molecule devices.展开更多
Tensile cracking is a predominant mode of failure in rocks within underground resource excavation and engineering structures,where rocks are frequently subjected to dynamic disturbances while simultaneously experienci...Tensile cracking is a predominant mode of failure in rocks within underground resource excavation and engineering structures,where rocks are frequently subjected to dynamic disturbances while simultaneously experiencing in-situ stresses.This paper proposes a new dynamic split tension setup utilising a cubic specimen to investigate the dynamic behaviour of rocks across various tensile strain rates and confining pressures.The objective is to extend the applicability of the triaxial Hopkinson bar in studying dynamic behaviour of geomaterials.For comparison,the dynamic Brazilian disc(BD)tests were performed using three rock types(e.g.,sandstone,granite and marble)under different strain rates ranging from 10^(−3)∼10^(2) s^(−1).Besides,the Digital Image Correlation(DIC)technique was adopted to measure full-field real-time tensile strain of rocks and demonstrated that tensile crack initiated at the middle part and split the specimen into two similar halves.Effects of specimen size,geometry,loading rate as well as the confining pressure are investigated in detail.The dynamic fracture behaviours,including dynamic tensile strength,tensile strain,time to fracture and dynamic increase factor(DIF),were characterised for the rocks.It is found that dynamic tensile strength of rock minimal dependence on size and geometry but is significantly influenced by loading rate and confinement.It exhibited a linear increase with strain rate(10^(0)∼10^(2) s^(−1))and demonstrated a nonlinear growth with lateral confinement from 0 to 15 MPa.The nonlinear dependency on confinement can be attributed to the restriction imposed on the opening and propagation of tensile cracks due to the presence of confinement.These findings enhance our understanding of the safety aspects associated with underground rock excavations,particularly in situations where considering in-situ stress is crucial for evaluating the dynamic tensile failure of rocks.展开更多
The stabilization of active molecules is significantly important for chemistry,especially for the bioactive molecules.In this work,we report the synthesis and characterization of three tetrahedral Fe_(4)L_(6) cages,wh...The stabilization of active molecules is significantly important for chemistry,especially for the bioactive molecules.In this work,we report the synthesis and characterization of three tetrahedral Fe_(4)L_(6) cages,which are water-soluble and functionalized with or without PEG chains.All cages can physically trap NO molecules in their cavities to prevent a reaction with O_(2).Single-crystal X-ray diffraction(SCXRD),Griess assay,electron paramagnetic resonance(EPR)spectroscopy,and fluorescence assay demonstrate that NO molecules were encapsulated and stabilized by these cage molecules through the formation of host-vip supramolecules.These NO-loaded cages show high antibacterial activities for inhibiting Staphylococcus aureus and Escherichia coli,providing a convenient method for making antibiotic agents.Moreover,these PEG-functionalized cages exhibit excellent biocompatibility,providing a new strategy for developing materials for NO delivery in biomedical applications.展开更多
Oil and gas exploration studies have been increasingly moving deeper into the earth.The rocks in deep and ultra-deep reservoirs are exposed to a complex environment of high temperatures and large geo-stresses.The Tari...Oil and gas exploration studies have been increasingly moving deeper into the earth.The rocks in deep and ultra-deep reservoirs are exposed to a complex environment of high temperatures and large geo-stresses.The Tarim oilfield in the Xinjiang Uygur Autonomous Region(Xinjiang for short),China,has achieved a breakthrough in the exploration of deep hydrocarbon reservoirs at a depth of over 9000 m.The mechanical properties of deep rocks are significantly different from those of shallow rocks.In this study,triaxial compression tests were conducted on heat-treated carbonatite rocks to explore the evolution of the mechanical properties of carbonatite rocks under high confining pressure after thermal treatment.The rocks for the tests were collected from reservoirs in the Tarim oilfield,Xinjiang,China.The experiments were performed at confining pressures ranging from atmospheric to 120 MPa and temperatures ranging from25 to 500°C.The results show that the critical confining pressure of the brittle–ductile transition increases with increasing temperature.Young's modulus is negatively correlated with the temperature and positively correlated with the confining pressure.As the confining pressure increases,the failure mode of the specimens gradually transforms from shear fracture failure into“V”-type failure and finally into bulging failure(multiple shear fractures).With increasing temperature,the failure angle tends to decrease.In addition,an improved version of the Mohr-Coulomb strength criterion with a temperature-dependent power function was proposed to describe the failure strength of carbonatite rocks after exposure to high temperature and high confining pressure.The surface of the strength envelope of this criterion is temperature dependent,which could reflect the strength evolution of rock under high confining pressures after thermal treatment.Compared with other strength criteria,this criterion is more capable of replicating physical processes.展开更多
To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Th...To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Then,the characteristics of rock mass crack development were analyzed,and the pressure resistance values of core samples before and after blasting were compared to study the trends of rock mass damage.Moreover,a three-dimensional numerical simulation model was established by LS-DYNA to analyze the stress wave propagation,cavity shape and crack propagation characteristics under different confining pressures.The propagation of rock blasting cracks is negatively correlated with the confining pressure.The greater the confining pressure,the shorter the crack development time.Additionally,the crack width is reduced from 0.4-1.7 to 0.04-1.4 mm,and the length is shortened from 280 to 120 mm.A comparison of the compressive strength revealed that blasting reduces the compressive strength of the rock mass.The greater the distance from the explosion source,the lower the degree of strength attenuation.An increase in the confining pressure can inhibit strength attenuation.Numerical simulations revealed that under the same confining pressure,the stress first peaks at the bottom of the blast hole.The greater the confining pressure,the longer the stress peak duration,the smaller the cavity volume,and the shorter the crack propagation length and depth.Under a confining pressure of 4 MPa,the longest crack was only 154.5 mm in length and 102 mm in depth.The research results provide a scientific basis for controlling rock damage and optimizing design in the excavation of deep rock roadways by blasting.展开更多
BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focu...BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions.展开更多
With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure...With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.展开更多
BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in a...BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC.展开更多
In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por...In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.展开更多
As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaos...As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.展开更多
The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the crit...The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.展开更多
The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enh...The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enhancing absorption properties.In this work,a porous elastic Co@CNF-PDMS composite was prepared by freeze-drying and confined catalysis.The graphitization degree and conductivity loss of carbon nanofibers(CNFs)were regulated by heat treatment temperature and Co catalyst content.The construction of a heterointerface between Co and C enhances the interfacial polarization loss.The Co@CNF-PDMS composite with 4.5 mm achieves the minimum reflection loss(RLmin)of-81.0 dB at 9.9 GHz and RL no higher than-12.1 dB in the whole of the X-band.After applying a load of up to 40% strain and 100 cycles to Co@CNF-PDMS,the dielectric properties of the composite remain stable.With the increase of compression strain,the distribution density of the absorbent increases,and the CNF sheet layer extrusion contact forms a conductive path,which leads to the conductive loss increase,finally,the absorption band moves to a high frequency.The absorption band can be bi-directionally regulated by loading and strain with good stability,which provides a new strategy for the development of intelligent electromagnetic wave absorbing materials.展开更多
To explore the effect of bedding and initial confining pressure on the energy evolution characteristics of shale during the unloading process,samples were drilled with different bedding angles,unloading tests were con...To explore the effect of bedding and initial confining pressure on the energy evolution characteristics of shale during the unloading process,samples were drilled with different bedding angles,unloading tests were conducted under different initial confining pressures,and the me-chanical and energy evolution characteristics of shale during the unloading process were analyzed.The results show that the stressestrain curve of the unloading test can be divided into the linear elasticity stage,the stable crack growth stage,the accelerated crack growth stage,and the post-failure stage.Critical confining pressure can show the relative strength of the rock samples.The elastic modulus and Poisson's ratio increase with an increase in axial preset load.The elastic modulus increases with the bedding angle,and the effect of the bedding angle on the Poisson's ratio is insignificant.The energy evolution of the unloading test can be divided into three stages:energy accumulation,energy dissipation,and energy release.The larger the axial preset load,the higher the critical confining pressure,the higher the elastic modulus,and the higher the Poisson's ratio.The total energy,elastic energy,and dissipation energy all increase with the increase in the initial confining pressure,and the correlation is high.Confining pressure enhances the ability of the shale sample to store elastic energy and improves the ability of the shale sample to resist internal crack propagation.The total energy,elastic energy,and dissipated energy of the samples in the failure point decrease first and then increase with the increase in the bedding angle.The maximum value can be obtained when the bedding angle is 0°.The elastic energy and dissipated energy of shale are highly heterogeneous due to bedding,and the effects of bedding should be taken into account when exploring the law of rock deformation and failure from an energy perspective.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are c...In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.展开更多
Many azo compounds and their intermediates are toxic and have been linked to various health issues,representing a growing global problem.Molecular engineering for selective encapsulation of azobenzene compounds is cri...Many azo compounds and their intermediates are toxic and have been linked to various health issues,representing a growing global problem.Molecular engineering for selective encapsulation of azobenzene compounds is critical,given their significant use in smart materials and prevalence as environmental micropollutants released from the food and dye industries.However,the current host molecules catering to azobenzene compounds are mainly limited to cyclodextrins,pillar[n]arenes and cucurbit[n]urils,demonstrating a moderate affinity.This report describes that a novel 3,3'-bipyridinium-based cyclophane was capable of encapsulating anionic azobenzene compounds in water with high binding affinity and pH stability through electrostatic attraction-enhanced mechanism,surpassing the extensively reported supramolecular systems.1D&2D NMR experiments,UV-vis spectrum,X-ray crystallography and computational modeling were carried out to understand the host-vip complexation.It's worth noting that the tetracationic cyclophane exhibited good selective and anti-interference encapsulation properties in binary,ternary and seawater systems.Furthermore,upon UV/white light irradiation,the reversible conversion between(E)-4,4'-azobisbenzoate and(Z)-4,4'-azobisbenzoate triggers the dissociation/recomplexation of the host-vip complex within 3 min.This reversible photo-switchable(E)-disodium 4,4'-azobisbenzoateBPy-Box^(4+)supramolecular system holds promise for designing novel materials for extraction/release of azo compounds and other small smart materials.展开更多
In recent years, significant research efforts have been made to optimize the lithography processes. Liu et al.[1](Nat.Commun, 2024, https://doi.org/10.1038/s41467-024-46743-5)pioneered a new multi-photon lithography t...In recent years, significant research efforts have been made to optimize the lithography processes. Liu et al.[1](Nat.Commun, 2024, https://doi.org/10.1038/s41467-024-46743-5)pioneered a new multi-photon lithography technology in which light field and matter are co-confined, significantly exceeding the limitations of traditional lithography technology. In this news and views, we introduce this work to readers.展开更多
Guava(Psidium guajava L.),a plant belonging to the Myrtaceae family,holds significant medicinal and nutritional values.Leaves of the plant are described to be elliptical with a dark green color and are utilized in the...Guava(Psidium guajava L.),a plant belonging to the Myrtaceae family,holds significant medicinal and nutritional values.Leaves of the plant are described to be elliptical with a dark green color and are utilized in the treatment of gastrointestinal and respiratory issues along with increasing the platelet count in patients suffering from dengue.In this review paper,the nutritional composition and bioactive compounds of guava leaves,including proteins,vitamins,minerals,and polysaccharides,have been reviewed.The methods of extraction of bioactive compounds from guava leaves and their bioactivities,including antioxidant,anti-diabetic,and anti-cancer potential,have been explored.Further,encapsulation techniques for improving the transport of bioactive compounds and living cells into foods have been studied.The application of guava leaves in different food systems such as herbal tea,pork sausage,chocolates,jelly,meals for chickens,functional beverages,and as antibacterial agents in food preservatives has also been investigated.The findings of this review illustrated that the phytochemicals present in guava leaves showed excellent antimicrobial and antioxidant properties.Encapsulation appears to be a promising technique for improving the stability,bioavailability,and controlled release of bioactive chemicals extracted from guava leaves.Different methods for the encapsulation of bioactive compounds employed and applied in distinct food systems showed preservation of phytochemicals,improved bioactivities,and nutritional values.Overall,this review paper demonstrated how guava leaves,an abundant source of bioactive compounds,can be used as a multipurpose component to create functional foods,edible coatings,and active packaging to enhance the nutritional,antioxidant,and antimicrobial properties of various food systems that have qualities that promote health.展开更多
Encapsulation and protection of hesperidin(HES)in mung bean protein isolate(MPI)-dextran(DX)conjugatestabilized nanoemulsions(MDC NEs)were investigated in this study.The degree of grafting of MDC prepared by a dry-hea...Encapsulation and protection of hesperidin(HES)in mung bean protein isolate(MPI)-dextran(DX)conjugatestabilized nanoemulsions(MDC NEs)were investigated in this study.The degree of grafting of MDC prepared by a dry-heating method reached 39.70%±0.01% under the optimal conditions of MPI/DX mass ratio 1:2.3,reaction temperature 58.8℃,and reaction time 4 d.Moreover,the analyses of Fourier infrared spectroscopy,intrinsic fluorescence spectroscopy,surface hydrophobicity,and thermal stability further confirmed the covalent grafting of dextran onto MPI molecules.When encapsulated in MDC NEs at 80 MPa for three times by highpressure homogenization,the encapsulation efficiency and loading capacity of HES were 63.62%±0.01%and 0.40±0.00 g/g,respectively.The encapsulated HES exhibited higher antioxidant activity and stronger light and storage stability than the free HES.Additionally,the incorporation of HES inhibited the formation of lipid peroxides in the nanoemulsions.The findings suggest that glycosylation combined with high-pressure homogenization is an effective strategy for enhancing the stability of MPI-based emulsions and improving their encapsulation of HES.This study provides a promising approach for the development of innovative food and beverage products based on MPI emulsions or new materials for encapsulating fat-soluble bioactive compounds.展开更多
基金the financial supports from the National Natural Science Foundation of China(Nos.22378093,21878065)Natural Science Foundation of Hebei Province,China(No.E2022201100)+2 种基金the Science and Technology Support Plan of Baoding City(No.2241ZF111)the Medical Science Foundation of Hebei University(No.2021A09)the Foundation of Affiliated Hospital of Hebei University(No.2021Z003)。
文摘The preparation of immobilized enzyme with excellent performance is one of the difficulties that restrict the application of enzyme catalysis technology.Here,Candida rugosa lipase(CRL)was firstly adsorbed on the surface of magnetic zeolitic imidazolate framework-8(ZIF-8)nanospheres,which was further encapsulated with a mesoporous SiO_(2)nano-membrane formed by tetraethyl orthosilicate(TEOS)polycondensation.Consequently,lipase could be firmly immobilized on carrier surface by physical binding rather than chemical binding,which did not damage the active conformation of enzyme.There were mesopores on the silica nano-membrane,which could improve the accessibility of enzyme and its apparent catalytic activity.Moreover,silica membrane encapsulation could also improve the stability of enzyme,suggesting an effective enzyme immobilization strategy.It showed that TEOS amount and the encapsulation time had significant effects on the thickness of silica membrane and the enzyme activity.The analysis in enzyme activity and protein secondary structure showed that lipase encapsulated in silica membrane retained the active conformation to the greatest extent.Compared with the adsorbed lipase,the encapsulated lipase increased its thermostability by 3 times and resistance to chemical denaturants by 7 times.The relative enzyme activity remained around 80%after 8 repetitions,while the adsorbed lipase only remained at7.3%.
基金supported by the National Natural Science Foundation of China(Nos.22205084,42307566,22325303,22250003,T2222002,21991130,22032004)Fujian Provincial Natural Science Foundation of China(No.2022H6014)+4 种基金the China Postdoctoral Science Foundation(Nos.2023M741039,2023M742199)Project funded by National&Local Joint Engineering Research Center for Mineral Salt Deep Utilization(No.SF202303)State Key Laboratory of Efficient Utilization for Low Grade Phosphate Rock and Its Associated Resources WFKF(2023)013the Fundamental Research Funds for the Central Universities(Xiamen University,No.20720240053)State Key Laboratory of Vaccines for Infectious Diseases,Xiang An Biomedicine Laboratory(No.2023XAKJ0103074)。
文摘Single-molecule junctions are building blocks for constructing molecular devices.However,intermolecular interactions like winding bring additional interference among the surrounding molecules,which inhibits the intrinsic coherent transport through single-molecule junctions.Here,we employed a nanocavity(dimethoxypillar[5]arene,DMP[5]),which is analogous to electric cables,to confine the conformation of flexible chains(1,8-diaminooctane,DAO)via host-vip interaction.Single-molecule conductance measurements indicate that the conductance of DAO encapsulated with DMP[5]is as high as that of pure DAO,as reproduced by theoretical simulations.Intriguingly,the molecular lengths of the DAO encapsulated with DMP[5]increase from 1.13 nm to 1.46 nm compared with the pure DAO,indicating that DMP[5]keeps DAO upright-standing via the confinement effect.This work provides a new strategy to decouple the intermolecular interaction by employing an insulating sheath,enabling the high-density integration of single-molecule devices.
基金supported by the Australian Research Council(LE150100058)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering(Z020002)State Key Laboratory of Coal Mine Disaster Dynamics and Control.The specimens were scanned at the Imaging and Medical beamline(IMBL)under the Australian Synchrotron projects(NO:M15862 and M14428).
文摘Tensile cracking is a predominant mode of failure in rocks within underground resource excavation and engineering structures,where rocks are frequently subjected to dynamic disturbances while simultaneously experiencing in-situ stresses.This paper proposes a new dynamic split tension setup utilising a cubic specimen to investigate the dynamic behaviour of rocks across various tensile strain rates and confining pressures.The objective is to extend the applicability of the triaxial Hopkinson bar in studying dynamic behaviour of geomaterials.For comparison,the dynamic Brazilian disc(BD)tests were performed using three rock types(e.g.,sandstone,granite and marble)under different strain rates ranging from 10^(−3)∼10^(2) s^(−1).Besides,the Digital Image Correlation(DIC)technique was adopted to measure full-field real-time tensile strain of rocks and demonstrated that tensile crack initiated at the middle part and split the specimen into two similar halves.Effects of specimen size,geometry,loading rate as well as the confining pressure are investigated in detail.The dynamic fracture behaviours,including dynamic tensile strength,tensile strain,time to fracture and dynamic increase factor(DIF),were characterised for the rocks.It is found that dynamic tensile strength of rock minimal dependence on size and geometry but is significantly influenced by loading rate and confinement.It exhibited a linear increase with strain rate(10^(0)∼10^(2) s^(−1))and demonstrated a nonlinear growth with lateral confinement from 0 to 15 MPa.The nonlinear dependency on confinement can be attributed to the restriction imposed on the opening and propagation of tensile cracks due to the presence of confinement.These findings enhance our understanding of the safety aspects associated with underground rock excavations,particularly in situations where considering in-situ stress is crucial for evaluating the dynamic tensile failure of rocks.
基金supported by the National Natural Science Foundation of China(Nos.22171106,22431006,22150004 and 22375075)Guangdong Major Project of Basic and Applied Basic Research(Nos.2023B0303000013,2019B030302009)+1 种基金Guangdong Natural Science Foundation(No.2022A1515011937)Jinan University.
文摘The stabilization of active molecules is significantly important for chemistry,especially for the bioactive molecules.In this work,we report the synthesis and characterization of three tetrahedral Fe_(4)L_(6) cages,which are water-soluble and functionalized with or without PEG chains.All cages can physically trap NO molecules in their cavities to prevent a reaction with O_(2).Single-crystal X-ray diffraction(SCXRD),Griess assay,electron paramagnetic resonance(EPR)spectroscopy,and fluorescence assay demonstrate that NO molecules were encapsulated and stabilized by these cage molecules through the formation of host-vip supramolecules.These NO-loaded cages show high antibacterial activities for inhibiting Staphylococcus aureus and Escherichia coli,providing a convenient method for making antibiotic agents.Moreover,these PEG-functionalized cages exhibit excellent biocompatibility,providing a new strategy for developing materials for NO delivery in biomedical applications.
基金National Natural Science Foundation of China,Grant/Award Number:52034010。
文摘Oil and gas exploration studies have been increasingly moving deeper into the earth.The rocks in deep and ultra-deep reservoirs are exposed to a complex environment of high temperatures and large geo-stresses.The Tarim oilfield in the Xinjiang Uygur Autonomous Region(Xinjiang for short),China,has achieved a breakthrough in the exploration of deep hydrocarbon reservoirs at a depth of over 9000 m.The mechanical properties of deep rocks are significantly different from those of shallow rocks.In this study,triaxial compression tests were conducted on heat-treated carbonatite rocks to explore the evolution of the mechanical properties of carbonatite rocks under high confining pressure after thermal treatment.The rocks for the tests were collected from reservoirs in the Tarim oilfield,Xinjiang,China.The experiments were performed at confining pressures ranging from atmospheric to 120 MPa and temperatures ranging from25 to 500°C.The results show that the critical confining pressure of the brittle–ductile transition increases with increasing temperature.Young's modulus is negatively correlated with the temperature and positively correlated with the confining pressure.As the confining pressure increases,the failure mode of the specimens gradually transforms from shear fracture failure into“V”-type failure and finally into bulging failure(multiple shear fractures).With increasing temperature,the failure angle tends to decrease.In addition,an improved version of the Mohr-Coulomb strength criterion with a temperature-dependent power function was proposed to describe the failure strength of carbonatite rocks after exposure to high temperature and high confining pressure.The surface of the strength envelope of this criterion is temperature dependent,which could reflect the strength evolution of rock under high confining pressures after thermal treatment.Compared with other strength criteria,this criterion is more capable of replicating physical processes.
基金The National Natural Science Foundation of China(No.51874189)the Shandong Provincial Natural Science Foundation(Nos.ZR2023ME106 and ZR2023ME055)the Open Fund Project of the Engineering Research Center of the Ministry of Education for Mining Underground Engineering(No.JYBGCZX2021102).
文摘To study the relationships between rock mass crack propagation and damage and confining pressure under blast impact loading during straight-hole cut blasting,tests were performed under different confining pressures.Then,the characteristics of rock mass crack development were analyzed,and the pressure resistance values of core samples before and after blasting were compared to study the trends of rock mass damage.Moreover,a three-dimensional numerical simulation model was established by LS-DYNA to analyze the stress wave propagation,cavity shape and crack propagation characteristics under different confining pressures.The propagation of rock blasting cracks is negatively correlated with the confining pressure.The greater the confining pressure,the shorter the crack development time.Additionally,the crack width is reduced from 0.4-1.7 to 0.04-1.4 mm,and the length is shortened from 280 to 120 mm.A comparison of the compressive strength revealed that blasting reduces the compressive strength of the rock mass.The greater the distance from the explosion source,the lower the degree of strength attenuation.An increase in the confining pressure can inhibit strength attenuation.Numerical simulations revealed that under the same confining pressure,the stress first peaks at the bottom of the blast hole.The greater the confining pressure,the longer the stress peak duration,the smaller the cavity volume,and the shorter the crack propagation length and depth.Under a confining pressure of 4 MPa,the longest crack was only 154.5 mm in length and 102 mm in depth.The research results provide a scientific basis for controlling rock damage and optimizing design in the excavation of deep rock roadways by blasting.
基金Supported by the Project of Shanghai Municipal Commission of Health,No.2022LJ024.
文摘BACKGROUND Vessels encapsulating tumor clusters(VETC)represent a recently discovered vascular pattern associated with novel metastasis mechanisms in hepatocellular carcinoma(HCC).However,it seems that no one have focused on predicting VETC status in small HCC(sHCC).This study aimed to develop a new nomogram for predicting VETC positivity using preoperative clinical data and image features in sHCC(≤3 cm)patients.AIM To construct a nomogram that combines preoperative clinical parameters and image features to predict patterns of VETC and evaluate the prognosis of sHCC patients.METHODS A total of 309 patients with sHCC,who underwent segmental resection and had their VETC status confirmed,were included in the study.These patients were recruited from three different hospitals:Hospital 1 contributed 177 patients for the training set,Hospital 2 provided 78 patients for the test set,and Hospital 3 provided 54 patients for the validation set.Independent predictors of VETC were identified through univariate and multivariate logistic analyses.These independent predictors were then used to construct a VETC prediction model for sHCC.The model’s performance was evaluated using the area under the curve(AUC),calibration curve,and clinical decision curve.Additionally,Kaplan-Meier survival analysis was performed to confirm whether the predicted VETC status by the model is associated with early recurrence,just as it is with the actual VETC status and early recurrence.RESULTS Alpha-fetoprotein_lg10,carbohydrate antigen 199,irregular shape,non-smooth margin,and arterial peritumoral enhancement were identified as independent predictors of VETC.The model incorporating these predictors demonstrated strong predictive performance.The AUC was 0.811 for the training set,0.800 for the test set,and 0.791 for the validation set.The calibration curve indicated that the predicted probability was consistent with the actual VETC status in all three sets.Furthermore,the decision curve analysis demonstrated the clinical benefits of our model for patients with sHCC.Finally,early recurrence was more likely to occur in the VETC-positive group compared to the VETC-negative group,regardless of whether considering the actual or predicted VETC status.CONCLUSION Our novel prediction model demonstrates strong performance in predicting VETC positivity in sHCC(≤3 cm)patients,and it holds potential for predicting early recurrence.This model equips clinicians with valuable information to make informed clinical treatment decisions.
基金the National Natural Science Foundation of China(Nos.52374218,52174122 and 52374094)Outstanding Youth Fund of Shandong Natural Science Foundation(No.ZR2022YQ49)Taishan Scholar Project in Shandong Province(Nos.tspd20210313 and tsqn202211150).
文摘With the increase of underground engineering construction depth,the phenomenon of surrounding rock sudden failure caused by supporting structure failure occurs frequently.The conventional unloading con-fining pressure(CUCP)test cannot simulate the plastic yielding and instantaneous unloading process of supporting structure to rock.Thus,a high stress loading-instantaneous unloading confining pressure(HSL-IUCP)test method was proposed and applied by considering bolt’s fracture under stress.The wall thickness of confining pressure plates and the material of bolts were changed to realize different confin-ing pressure loading stiffness(CPLS)and lateral maximum allowable deformation(LMAD).The superio-rity of HSL-ICPU method is verified compared with CUCP.The rock failure mechanism caused by sudden failure of supporting structure is obtained.The results show that when CPLS increases from 1.35 to 2.33 GN/m,rock’s peak strength and elastic modulus increase by 25.18%and 23.70%,respectively.The fracture characteristics change from tensile failure to tensile-shear mixed failure.When LMAD decreases from 0.40 to 0.16 mm,rock’s residual strength,peak strain,and residual strain decrease by 91.80%,16.94%,and 21.92%,respectively,and post-peak drop modulus increases by 140.47%.The test results obtained by this method are closer to rock’s real mechanical response characteristics compared with CUCP.
基金The study was reviewed and approved by the Second Hospital of Shandong University Institutional Review Board,IRB No.KYLL-2023LW044.
文摘BACKGROUND Recently,vessels encapsulating tumor clusters(VETC)was considered as a distinct pattern of tumor vascularization which can primarily facilitate the entry of the whole tumor cluster into the bloodstream in an invasion independent manner,and was regarded as an independent risk factor for poor prognosis in hepatocellular carcinoma(HCC).AIM To develop and validate a preoperative nomogram using contrast-enhanced computed tomography(CECT)to predict the presence of VETC+in HCC.METHODS We retrospectively evaluated 190 patients with pathologically confirmed HCC who underwent CECT scanning and immunochemical staining for cluster of differentiation 34 at two medical centers.Radiomics analysis was conducted on intratumoral and peritumoral regions in the portal vein phase.Radiomics features,essential for identifying VETC+HCC,were extracted and utilized to develop a radiomics model using machine learning algorithms in the training set.The model’s performance was validated on two separate test sets.Receiver operating characteristic(ROC)analysis was employed to compare the identified performance of three models in predicting the VETC status of HCC on both training and test sets.The most predictive model was then used to constructed a radiomics nomogram that integrated the independent clinical-radiological features.ROC and decision curve analysis were used to assess the performance characteristics of the clinical-radiological features,the radiomics features and the radiomics nomogram.RESULTS The study included 190 individuals from two independent centers,with the majority being male(81%)and a median age of 57 years(interquartile range:51-66).The area under the curve(AUC)for the combined radiomics features selected from the intratumoral and peritumoral areas were 0.825,0.788,and 0.680 in the training set and the two test sets.A total of 13 features were selected to construct the Rad-score.The nomogram,combining clinicalradiological and combined radiomics features could accurately predict VETC+in all three sets,with AUC values of 0.859,0.848 and 0.757.Decision curve analysis revealed that the radiomics nomogram was more clinically useful than both the clinical-radiological feature and the combined radiomics models.CONCLUSION This study demonstrates the potential utility of a CECT-based radiomics nomogram,incorporating clinicalradiological features and combined radiomics features,in the identification of VETC+HCC.
基金Project supported by the National Natural Science Foundation of China (Grant No.42074139)the Natural Science Foundation of Jilin Province,China (Grant No.20210101140JC)。
文摘In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media.
基金the National Natural Science Foundation of China(12074348,12261141661,62204223,52072345,and 12174348)the China Postdoctoral Science Foundation(2022TQ0307)the Natural Science Foundation of Henan Province(242300421179 and 222102310664).
文摘As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.
文摘The disposal of filtered tailings in high dry stacks can induce particle breakage,changing the material's behaviour during the structure's lifetime.The grading changes influence material properties at the critical state,and this is not mature for intermediate artificial soils(tailings)in a broad range of confining pressures.In this paper,it aims to describe the behaviour of iron ore tailings in a spectrum of confining pressures broader than the reported in previous studies.A series of consolidated drained(CD)triaxial tests was carried out with confining pressures ranging from 0.075 MPa to 120 MPa.These results show that the amount of breakage plays an essential role in the response of iron ore tailings.The existence of curved critical state line(CSL)in both specific volume(ν)-logarithm of mean effective stress(p′)and deviatoric stress(q)-mean effective stress(p′)planes,and different responses in the deviatoric stress-axial strain-volumetric strain curves were verified.An inverse S-shaped equation was proposed to represent the silty-sandy tailings'behaviour up to high pressures onν-lnp′plane.The proposed equation provides a basis for enhancing constitutive models and considers the evolution of the grading up to severe loading conditions.The adjustment considered three regions with different responses associated with particle breakage at different pressure levels.
基金financially supported by the National Natural Science Foundation of China(No.52231007)the Natural Science Foundation of Shaanxi Province(No.2022JM-248)+1 种基金the Creative Research Foundation of the Science and Technology on Thermostructural Composite Materials Laboratorythe Doctoral Scientific Research Foundation of Shaanxi University of Science&Technology(No.BJ16-06).
文摘The dielectric loss of carbon materials is closely related to the microstructure and the degree of crystallization,and the microstructure modulation of electromagnetic wave absorbing carbon materials is the key to enhancing absorption properties.In this work,a porous elastic Co@CNF-PDMS composite was prepared by freeze-drying and confined catalysis.The graphitization degree and conductivity loss of carbon nanofibers(CNFs)were regulated by heat treatment temperature and Co catalyst content.The construction of a heterointerface between Co and C enhances the interfacial polarization loss.The Co@CNF-PDMS composite with 4.5 mm achieves the minimum reflection loss(RLmin)of-81.0 dB at 9.9 GHz and RL no higher than-12.1 dB in the whole of the X-band.After applying a load of up to 40% strain and 100 cycles to Co@CNF-PDMS,the dielectric properties of the composite remain stable.With the increase of compression strain,the distribution density of the absorbent increases,and the CNF sheet layer extrusion contact forms a conductive path,which leads to the conductive loss increase,finally,the absorption band moves to a high frequency.The absorption band can be bi-directionally regulated by loading and strain with good stability,which provides a new strategy for the development of intelligent electromagnetic wave absorbing materials.
基金supported by the Provincial Geological Exploration Projects in Guizhou Province(Grant Nos.52000024P0048BH10174 M)National Natural Science Foundation of China(Grant Nos.U1262209).
文摘To explore the effect of bedding and initial confining pressure on the energy evolution characteristics of shale during the unloading process,samples were drilled with different bedding angles,unloading tests were conducted under different initial confining pressures,and the me-chanical and energy evolution characteristics of shale during the unloading process were analyzed.The results show that the stressestrain curve of the unloading test can be divided into the linear elasticity stage,the stable crack growth stage,the accelerated crack growth stage,and the post-failure stage.Critical confining pressure can show the relative strength of the rock samples.The elastic modulus and Poisson's ratio increase with an increase in axial preset load.The elastic modulus increases with the bedding angle,and the effect of the bedding angle on the Poisson's ratio is insignificant.The energy evolution of the unloading test can be divided into three stages:energy accumulation,energy dissipation,and energy release.The larger the axial preset load,the higher the critical confining pressure,the higher the elastic modulus,and the higher the Poisson's ratio.The total energy,elastic energy,and dissipation energy all increase with the increase in the initial confining pressure,and the correlation is high.Confining pressure enhances the ability of the shale sample to store elastic energy and improves the ability of the shale sample to resist internal crack propagation.The total energy,elastic energy,and dissipated energy of the samples in the failure point decrease first and then increase with the increase in the bedding angle.The maximum value can be obtained when the bedding angle is 0°.The elastic energy and dissipated energy of shale are highly heterogeneous due to bedding,and the effects of bedding should be taken into account when exploring the law of rock deformation and failure from an energy perspective.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.
基金Supported by the Natural Science Foundation of China(51705326,52075339)。
文摘In sub nanometer carbon nanotubes,water exhibits unique dynamic characteristics,and in the high-frequency region of the infrared spectrum,where the stretching vibrations of the internal oxygen-hydrogen(O-H)bonds are closely related to the hydrogen bonds(H-bonds)network between water molecules.Therefore,it is crucial to analyze the relationship between these two aspects.In this paper,the infrared spectrum and motion characteristics of the stretching vibrations of the O-H bonds in one-dimensional confined water(1DCW)and bulk water(BW)in(6,6)single-walled carbon nanotubes(SWNT)are studied by molecular dynamics simulations.The results show that the stretching vibrations of the two O-H bonds in 1DCW exhibit different frequencies in the infrared spectrum,while the O-H bonds in BW display two identical main frequency peaks.Further analysis using the spring oscillator model reveals that the difference in the stretching amplitude of the O-H bonds is the main factor causing the change in vibration frequency,where an increase in stretching amplitude leads to a decrease in spring stiffness and,consequently,a lower vibration frequency.A more in-depth study found that the interaction of H-bonds between water molecules is the fundamental cause of the increased stretching amplitude and decreased vibration frequency of the O-H bonds.Finally,by analyzing the motion trajectory of the H atoms,the dynamic differences between 1DCW and BW are clearly revealed.These findings provide a new perspective for understanding the behavior of water molecules at the nanoscale and are of significant importance in advancing the development of infrared spectroscopy detection technology.
基金support by the National Natural Science Foundation of China(No.52473225)the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515110262)。
文摘Many azo compounds and their intermediates are toxic and have been linked to various health issues,representing a growing global problem.Molecular engineering for selective encapsulation of azobenzene compounds is critical,given their significant use in smart materials and prevalence as environmental micropollutants released from the food and dye industries.However,the current host molecules catering to azobenzene compounds are mainly limited to cyclodextrins,pillar[n]arenes and cucurbit[n]urils,demonstrating a moderate affinity.This report describes that a novel 3,3'-bipyridinium-based cyclophane was capable of encapsulating anionic azobenzene compounds in water with high binding affinity and pH stability through electrostatic attraction-enhanced mechanism,surpassing the extensively reported supramolecular systems.1D&2D NMR experiments,UV-vis spectrum,X-ray crystallography and computational modeling were carried out to understand the host-vip complexation.It's worth noting that the tetracationic cyclophane exhibited good selective and anti-interference encapsulation properties in binary,ternary and seawater systems.Furthermore,upon UV/white light irradiation,the reversible conversion between(E)-4,4'-azobisbenzoate and(Z)-4,4'-azobisbenzoate triggers the dissociation/recomplexation of the host-vip complex within 3 min.This reversible photo-switchable(E)-disodium 4,4'-azobisbenzoateBPy-Box^(4+)supramolecular system holds promise for designing novel materials for extraction/release of azo compounds and other small smart materials.
基金supported by Xishan-Tsinghua University Industry University Research Deep Integration Special Projectby Beijing Natural Science Foundation–Xiaomi Innovation Joint Fund (Grant No. L233009)by National Natural Science Foundation of China under Grant No. 62374099。
文摘In recent years, significant research efforts have been made to optimize the lithography processes. Liu et al.[1](Nat.Commun, 2024, https://doi.org/10.1038/s41467-024-46743-5)pioneered a new multi-photon lithography technology in which light field and matter are co-confined, significantly exceeding the limitations of traditional lithography technology. In this news and views, we introduce this work to readers.
文摘Guava(Psidium guajava L.),a plant belonging to the Myrtaceae family,holds significant medicinal and nutritional values.Leaves of the plant are described to be elliptical with a dark green color and are utilized in the treatment of gastrointestinal and respiratory issues along with increasing the platelet count in patients suffering from dengue.In this review paper,the nutritional composition and bioactive compounds of guava leaves,including proteins,vitamins,minerals,and polysaccharides,have been reviewed.The methods of extraction of bioactive compounds from guava leaves and their bioactivities,including antioxidant,anti-diabetic,and anti-cancer potential,have been explored.Further,encapsulation techniques for improving the transport of bioactive compounds and living cells into foods have been studied.The application of guava leaves in different food systems such as herbal tea,pork sausage,chocolates,jelly,meals for chickens,functional beverages,and as antibacterial agents in food preservatives has also been investigated.The findings of this review illustrated that the phytochemicals present in guava leaves showed excellent antimicrobial and antioxidant properties.Encapsulation appears to be a promising technique for improving the stability,bioavailability,and controlled release of bioactive chemicals extracted from guava leaves.Different methods for the encapsulation of bioactive compounds employed and applied in distinct food systems showed preservation of phytochemicals,improved bioactivities,and nutritional values.Overall,this review paper demonstrated how guava leaves,an abundant source of bioactive compounds,can be used as a multipurpose component to create functional foods,edible coatings,and active packaging to enhance the nutritional,antioxidant,and antimicrobial properties of various food systems that have qualities that promote health.
基金financially supported by the National Natural Science Foundation of China(Grant No.32101981)the cooperation project between Ya’an city and Sichuan Agricultural University(23ZDF0003)。
文摘Encapsulation and protection of hesperidin(HES)in mung bean protein isolate(MPI)-dextran(DX)conjugatestabilized nanoemulsions(MDC NEs)were investigated in this study.The degree of grafting of MDC prepared by a dry-heating method reached 39.70%±0.01% under the optimal conditions of MPI/DX mass ratio 1:2.3,reaction temperature 58.8℃,and reaction time 4 d.Moreover,the analyses of Fourier infrared spectroscopy,intrinsic fluorescence spectroscopy,surface hydrophobicity,and thermal stability further confirmed the covalent grafting of dextran onto MPI molecules.When encapsulated in MDC NEs at 80 MPa for three times by highpressure homogenization,the encapsulation efficiency and loading capacity of HES were 63.62%±0.01%and 0.40±0.00 g/g,respectively.The encapsulated HES exhibited higher antioxidant activity and stronger light and storage stability than the free HES.Additionally,the incorporation of HES inhibited the formation of lipid peroxides in the nanoemulsions.The findings suggest that glycosylation combined with high-pressure homogenization is an effective strategy for enhancing the stability of MPI-based emulsions and improving their encapsulation of HES.This study provides a promising approach for the development of innovative food and beverage products based on MPI emulsions or new materials for encapsulating fat-soluble bioactive compounds.