期刊文献+
共找到15,225篇文章
< 1 2 250 >
每页显示 20 50 100
Topological Structure Evolution of Polymer Network Based on Star-shaped Multi-armed Precursors
1
作者 Hui Li Zi-Jian Xue +2 位作者 Yao-Hong Xue Yingxiang Li Hong Liu 《Chinese Journal of Polymer Science》 2025年第7期1240-1252,共13页
The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior... The performance of polymer networks is directly determined by their structure.Understanding the network structure offers insights into optimizing material performance,such as elasticity,toughness,and swelling behavior.Herein,in this study we introduce the Dijkstra algorithm from graph theory to characterize polymer networks based on star-shaped multi-armed precursors by employing coarse-grained molecular dynamics simulations coupled with stochastic reaction model.Our research focuses on the structure characteristics of the generated networks,including the number and size of loops,as well as network dispersity characterized by loops.Tracking the number of loops during network generation allows for the identification of the gel point.The size distribution of loops in the network is primarily related to the functionality of the precursors,and the system with fewer precursor arms exhibiting larger average loop sizes.Strain-stress curves indicate that materials with identical functionality and precursor arm lengths generally exhibit superior performance.This method of characterizing network structures helps to refine microscopic structural analysis and contributes to the enhancement and optimization of material properties. 展开更多
关键词 Polymer network Topological structure Dijkstra algorithm Molecular dynamics
原文传递
Improved resistance to creep and underlying mechanisms in TiB/(TA15−Si)composites with network structure
2
作者 Shuai WANG Rui ZHANG +5 位作者 Ming JI Feng-bo SUN Zi-shuo MA Qi AN Lu-jun HUANG Lin GENG 《Transactions of Nonferrous Metals Society of China》 2025年第10期3357-3367,共11页
To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and v... To assess the high-temperature creep properties of titanium matrix composites for aircraft skin,the TA15 alloy,TiB/TA15 and TiB/(TA15−Si)composites with network structure were fabricated using low-energy milling and vacuum hot pressing sintering techniques.The results show that introducing TiB and Si can reduce the steady-state creep rate by an order of magnitude at 600℃ compared to the alloy.However,the beneficial effect of Si can be maintained at 700℃ while the positive effect of TiB gradually diminishes due to the pores near TiB and interface debonding.The creep deformation mechanism of the as-sintered TiB/(TA15−Si)composite is primarily governed by dislocation climbing.The high creep resistance at 600℃ can be mainly attributed to the absence of grain boundaryαphases,load transfer by TiB whisker,and the hindrance of dislocation movement by silicides.The low steady-state creep rate at 700℃ is mainly resulted from the elimination of grain boundaryαphases as well as increased dynamic precipitation of silicides andα_(2). 展开更多
关键词 discontinueously reinforced titanium matrix composite TiB whisker network structure SILICIDES creep properties
在线阅读 下载PDF
Prevalence and network structure of depression and its association with quality of life among older stroke survivors:findings from a national survey in China
3
作者 Mu-Rui Zheng Pan Chen +7 位作者 Ling Zhang Yuan Feng Teris Cheung Nicole Xun Xiang Gabor S Ungvari Qinge Zhang Chee H Ng Yu-Tao Xiang 《General Psychiatry》 2025年第2期82-92,共11页
Background Post-stroke depression(PSD)is a common neuropsychiatric problem associated with a high disease burden and reduced quality of life(QoL).To date,few studies have examined the network structure of depressive s... Background Post-stroke depression(PSD)is a common neuropsychiatric problem associated with a high disease burden and reduced quality of life(QoL).To date,few studies have examined the network structure of depressive symptoms and their relationships with QoL in stroke survivors.Aims This study aimed to explore the network structure of depressive symptoms in PSD and investigate the interrelationships between specific depressive symptoms and QoL among older stroke survivors.Methods This study was based on the 2017–2018 collection of data from a large national survey in China.Depressive symptoms were assessed using the 10-item Centre for Epidemiological Studies Depression Scale(CESD),while QoL was measured with the World Health Organization Quality of Life-brief version.Network analysis was employed to explore the structure of PSD,using expected influence(EI)to identify the most central symptoms and the flow function to investigate the association between depressive symptoms and QoL.Results A total of 1123 stroke survivors were included,with an overall prevalence of depression of 34.3%(n=385;95%confidence interval 31.5%to 37.2%).In the network model of depression,the most central symptoms were CESD3(‘feeling blue/depressed’,EI:1.180),CESD6(‘feeling nervous/fearful’,EI:0.864)and CESD8(‘loneliness’,EI:0.843).In addition,CESD5(‘hopelessness’,EI:−0.195),CESD10(‘sleep disturbances’,EI:−0.169)and CESD4(‘everything was an effort’,EI:−0.150)had strong negative associations with QoL.Conclusion This study found that PSD was common among older Chinese stroke survivors.Given its negative impact on QoL,appropriate interventions targeting central symptoms and those associated with QoL should be developed and implemented for stroke survivors with PSD. 展开更多
关键词 PREVALENCE stroke survivors neuropsychiatric problem China DEPRESSION quality life depressive symptoms network structure depressive symptoms
暂未订购
A Dynamic Social Network Graph Anonymity Scheme with Community Structure Protection
4
作者 Yuanjing Hao Xuemin Wang +2 位作者 Liang Chang Long Li Mingmeng Zhang 《Computers, Materials & Continua》 2025年第2期3131-3159,共29页
Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate ... Dynamic publishing of social network graphs offers insights into user behavior but brings privacy risks, notably re-identification attacks on evolving data snapshots. Existing methods based on -anonymity can mitigate these attacks but are cumbersome, neglect dynamic protection of community structure, and lack precise utility measures. To address these challenges, we present a dynamic social network graph anonymity scheme with community structure protection (DSNGA-CSP), which achieves the dynamic anonymization process by incorporating community detection. First, DSNGA-CSP categorizes communities of the original graph into three types at each timestamp, and only partitions community subgraphs for a specific category at each updated timestamp. Then, DSNGA-CSP achieves intra-community and inter-community anonymization separately to retain more of the community structure of the original graph at each timestamp. It anonymizes community subgraphs by the proposed novel -composition method and anonymizes inter-community edges by edge isomorphism. Finally, a novel information loss metric is introduced in DSNGA-CSP to precisely capture the utility of the anonymized graph through original information preservation and anonymous information changes. Extensive experiments conducted on five real-world datasets demonstrate that DSNGA-CSP consistently outperforms existing methods, providing a more effective balance between privacy and utility. Specifically, DSNGA-CSP shows an average utility improvement of approximately 30% compared to TAKG and CTKGA for three dynamic graph datasets, according to the proposed information loss metric IL. 展开更多
关键词 Dynamic social network graph k-composition anonymity community structure protection graph publishing security and privacy
在线阅读 下载PDF
Dynamic Structural Colors in Helical Superstructures:from Supramolecules to Polymers 被引量:1
5
作者 Bo Ji Lang Qin Yan-Lei Yu 《Chinese Journal of Polymer Science》 2025年第3期406-428,共23页
Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.... Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact. 展开更多
关键词 structural colors Cholesteric liquid crystals Elastomers Polymer network
原文传递
Graph neural link predictor based on cycle structure
6
作者 Yanlin Yang Zhonglin Ye +2 位作者 Lei Meng Mingyuan Li Haixing Zhao 《CAAI Transactions on Intelligence Technology》 2025年第2期615-632,共18页
Currently,the link prediction algorithms primarily focus on studying the interaction between nodes based on chain structure and star structure,which predominantly rely on low-order structural information and do not ex... Currently,the link prediction algorithms primarily focus on studying the interaction between nodes based on chain structure and star structure,which predominantly rely on low-order structural information and do not explore the multivariate interactions between nodes from the perspective of higher-order structural information present in the network.The cycle structure is a higher-order structure that lies between the star and clique structures,where all nodes within the same cycle can interact with each other,even in the absence of direct edges.If a node is encompassed by multiple cycles,it indicates that the node interacts and associates with a greater number of nodes in the network,and it means the node is more important in the network to some extent.Furthermore,if two nodes are included in multiple cycles,it signifies the two nodes are more likely to be connected.Therefore,firstly,a multi-information fusion node importance algorithm based on the cycle structure information is proposed,which integrates both high-order and low-order structural information.Secondly,the obtained integrated structure information and node feature information is regarded as the input features,a two-channel graph neural network model is designed to learn the cycle structure information.Then,the cycle structure information is utilised for the task of link prediction,and a graph neural link predictor with multi-information interactions based on the cycle structure is developed.Finally,extensive experimental validation and analysis show that the node ranking result of the proposed node importance index is more consistent with the actual situation,the proposed graph neural network model can effectively learn the cycle structure information,and using higher-order structural information—cycle information proves to significantly enhance the overall link prediction performance. 展开更多
关键词 cycle structure higher-order structure link prediction multi-information interactions neural network
在线阅读 下载PDF
Acceleration Response Reconstruction for Structural Health Monitoring Based on Fully Convolutional Networks
7
作者 Wenda Ma Qizhi Tang +2 位作者 Huang Lei Longfei Chang Chen Wang 《Structural Durability & Health Monitoring》 2025年第5期1265-1286,共22页
Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration response... Lost acceleration response reconstruction is crucial for assessing structural conditions in structural health monitoring(SHM).However,traditional methods struggle to address the reconstruction of acceleration responses with complex features,resulting in a lower reconstruction accuracy.This paper addresses this challenge by leveraging the advanced feature extraction and learning capabilities of fully convolutional networks(FCN)to achieve precise reconstruction of acceleration responses.In the designed network architecture,the incorporation of skip connections preserves low-level details of the network,greatly facilitating the flow of information and improving training efficiency and accuracy.Dropout techniques are employed to reduce computational load and enhance feature extraction.The proposed FCN model automatically extracts high-level features from the input data and establishes a nonlinearmapping relationship between the input and output responses.Finally,the accuracy of the FCN for structural response reconstructionwas evaluated using acceleration data from an experimental arch rib and comparedwith several traditional methods.Additionally,this approach was applied to reconstruct actual acceleration responses measured by an SHM system on a long-span bridge.Through parameter analysis,the feasibility and accuracy of aspects such as available response positions,the number of available channels,and multi-channel response reconstruction were explored.The results indicate that this method exhibits high-precision response reconstruction capability in both time and frequency domains.,with performance surpassing that of other networks,confirming its effectiveness in reconstructing responses under various sensor data loss scenarios. 展开更多
关键词 structural health monitoring acceleration response reconstruction fully convolutional network experimental validation large-scale structural application
在线阅读 下载PDF
Guided Wave Based Composite Structural Fatigue Damage Monitoring Utilizing the WOA-BP Neural Network
8
作者 Borui Wang Dongyue Gao +2 位作者 Haiyang Gu Mengke Ding Zhanjun Wu 《Computers, Materials & Continua》 2025年第4期455-473,共19页
Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approac... Fatigue damage is a primary contributor to the failure of composite structures,underscoring the critical importance of monitoring its progression to ensure structural safety.This paper introduces an innovative approach to fatigue damage monitoring in composite structures,leveraging a hybrid methodology that integrates the Whale Optimization Algorithm(WOA)-Backpropagation(BP)neural network with an ultrasonic guided wave feature selection algorithm.Initially,a network of piezoelectric ceramic sensors is employed to transmit and capture ultrasonic-guided waves,thereby establishing a signal space that correlates with the structural condition.Subsequently,the Relief-F algorithm is applied for signal feature extraction,culminating in the formation of a feature matrix.This matrix is then utilized to train the WOA-BP neural network,which optimizes the fatigue damage identification model globally.The proposed model’s efficacy in quantifying fatigue damage is tested against fatigue test datasets,with its performance benchmarked against the traditional BP neural network algorithm.The findings demonstrate that the WOA-BP neural network model not only surpasses the BP model in predictive accuracy but also exhibits enhanced global search capabilities.The effect of different sensor-receiver path signals on the model damage recognition results is also discussed.The results of the discussion found that the path directly through the damaged area is more accurate in modeling damage recognition compared to the path signals away from the damaged area.Consequently,the proposed monitoring method in the fatigue test dataset is adept at accurately tracking and recognizing the progression of fatigue damage. 展开更多
关键词 structural health monitoring ultrasonic guided wave composite structural fatigue damage monitoring WOA-BP neural network relief-F algorithm
在线阅读 下载PDF
Structural network communication differences in drug-naive depressed adolescents with non-suicidal self-injury and suicide attempts
9
作者 Shuai Wang Jiao-Long Qin +9 位作者 Lian-Lian Yang Ying-Ying Ji Hai-Xia Huang Xiao-Shan Gao Zi-Mo Zhou Zhen-Ru Guo Ye Wu Lin Tian Huang-Jing Ni Zhen-He Zhou 《World Journal of Psychiatry》 2025年第5期66-78,共13页
BACKGROUND Depression,non-suicidal self-injury(NSSI),and suicide attempts(SA)often co-occur during adolescence and are associated with long-term adverse health outcomes.Unfortunately,neural mechanisms underlying self-... BACKGROUND Depression,non-suicidal self-injury(NSSI),and suicide attempts(SA)often co-occur during adolescence and are associated with long-term adverse health outcomes.Unfortunately,neural mechanisms underlying self-injury and SA are poorly understood in depressed adolescents but likely relate to the structural abnormalities in brain regions.AIM To investigate structural network communication within large-scale brain networks in adolescents with depression.METHODS We constructed five distinct network communication models to evaluate structural network efficiency at the whole-brain level in adolescents with depression.Diffusion magnetic resonance imaging data were acquired from 32 healthy controls and 85 depressed adolescents,including 17 depressed adolescents without SA or NSSI(major depressive disorder group),27 depressed adolescents with NSSI but no SA(NSSI group),and 41 depressed adolescents with SA and NSSI(NSSI+SA group).RESULTS Significant differences in structural network communication were observed across the four groups,involving spatially widespread brain regions,particularly encompassing cortico-cortical connections(e.g.,dorsal posterior cingulate gyrus and the right ventral posterior cingulate gyrus;connections based on precentral gyrus)and cortico-subcortical circuits(e.g.,the nucleus accumbens-frontal circuit).In addition,we examined whether compromised communication efficiency was linked to clinical symptoms in the depressed adolescents.We observed significant correlations between network communication efficiencies and clinical scale scores derived from depressed adolescents with NSSI and SA.CONCLUSION This study provides evidence of structural network communication differences in depressed adolescents with NSSI and SA,highlighting impaired neuroanatomical communication efficiency as a potential contributor to their symptoms.These findings offer new insights into the pathophysiological mechanisms underlying the comorbidity of NSSI and SA in adolescent depression. 展开更多
关键词 DEPRESSION Non-suicidal self-injury Suicide attempts Adolescents Communication models structural network efficiency
暂未订购
Neural network solution based on the minimum potential energy principle for static problems of structural mechanics
10
作者 Jiamin QIAN Lincong CHEN J.Q.SUN 《Applied Mathematics and Mechanics(English Edition)》 2025年第6期1125-1142,共18页
This paper presents the variational physics-informed neural network(VPINN)as an effective tool for static structural analyses.One key innovation includes the construction of the neural network solution as an admissibl... This paper presents the variational physics-informed neural network(VPINN)as an effective tool for static structural analyses.One key innovation includes the construction of the neural network solution as an admissible function of the boundary-value problem(BVP),which satisfies all geometrical boundary conditions.We then prove that the admissible neural network solution also satisfies natural boundary conditions,and therefore all boundary conditions,when the stationarity condition of the variational principle is met.Numerical examples are presented to show the advantages and effectiveness of the VPINN in comparison with the physics-informed neural network(PINN).Another contribution of the work is the introduction of Gaussian approximation of the Dirac delta function,which significantly enhances the ability of neural networks to handle singularities,as demonstrated by the examples with concentrated support conditions and loadings.It is hoped that these structural examples are so convincing that engineers would adopt the VPINN method in their structural design practice. 展开更多
关键词 physics-informed neural network(PINN) variational physics-informed neural network(VPINN) structural statics admissible function Gaussian approximation
在线阅读 下载PDF
An efficient deep learning-based topology optimization method for continuous fiber composite structure
11
作者 Jicheng Li Hongling Ye +3 位作者 Yongjia Dong Zhanli Liu Tianfeng Sun Haisheng Wu 《Acta Mechanica Sinica》 2025年第4期82-96,共15页
This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure(CFRCS).The proposed method mainly... This paper presents a deep learning-based topology optimization method for the joint design of material layout and fiber orientation in continuous fiber-reinforced composite structure(CFRCS).The proposed method mainly includes three steps:(1)a ResUNet-involved generative and adversarial network(ResUNet-GAN)is developed to establish the end-to-end mapping from structural design parameters to fiber-reinforced composite optimized structure,and a fiber orientation chromatogram is presented to represent continuous fiber angles;(2)to avoid the local optimum problem,the independent continuous mapping method(ICM method)considering the improved principal stress orientation interpolated continuous fiber angle optimization(PSO-CFAO)strategy is utilized to construct CFRCS topology optimization dataset;(3)the well-trained ResUNet-GAN is deployed to design the optimal structural material distribution together with the corresponding continuous fiber orientations.Numerical simulations for benchmark structure verify that the proposed method greatly improves the design efficiency of CFRCS along with high design accuracy.Furthermore,the CFRCS topology configuration designed by ResUNet-GAN is fabricated by additive manufacturing.Compression experiments of the specimens show that both the stiffness structure and peak load of the CFRCS topology configuration designed by the proposed method have significantly enhanced.The proposed deep learning-based topology optimization method will provide great flexibility in CFRCS for engineering applications. 展开更多
关键词 Topology optimization Fiber-reinforced composite structure Generative and adversarial networks Additive manufacturing
原文传递
Multifunctional Carbon Foam with Nanoscale Chiral Magnetic Heterostructures for Broadband Microwave Absorption in Low Frequency
12
作者 Hao Zhang Kaili Kuang +6 位作者 Yifeng Zhang Chen Sun Tingkang Yuan Ruilin Yin Zeng Fan Renchao Che Lujun Pan 《Nano-Micro Letters》 2025年第6期181-197,共17页
The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challengin... The construction of carbon nanocoil(CNC)-based chiral-dielectric-magnetic trinity composites is considered as a promising approach to achieve excellent low-frequency microwave absorption.However,it is still challenging to further enhance the low frequency microwave absorption and elucidate the related loss mechanisms.Herein,the chiral CNCs are first synthesized on a threedimensional(3D)carbon foam and then combined with the FeNi/NiFe_(2)O_(4) nanoparticles to form a novel chiral-dielectric-magnetic trinity foam.The 3D porous CNC-carbon foam network provides excellent impedance matching and strong conduction loss.The formation of the FeNi-carbon interfaces induces interfacial polarization loss,which is confirmed by the density functional theory calculations.Further permeability analysis and the micromagnetic simulation indicate that the nanoscale chiral magnetic heterostructures achieve magnetic pinning and coupling effects,which enhance the magnetic anisotropy and magnetic loss capability.Owing to the synergistic effect between dielectricity,chirality,and magnetism,the trinity composite foam exhibits excellent microwave absorption performance with an ultrabroad effective absorption bandwidth(EAB)of 14 GHz and a minimum reflection of loss less than-50 dB.More importantly,the C-band EAB of the foam is extended to 4 GHz,achieving the full C-band coverage.This study provides further guidelines for the microstructure design of the chiral-dielectric-magnetic trinity composites to achieve broadband microwave absorption. 展开更多
关键词 Carbon nanocoils Chiral magnetic structures 3D conductive networks Magnetic pinning effect Broadband microwave absorption
在线阅读 下载PDF
Polymerized-ionic-liquid-based solid polymer electrolyte for ultra-stable lithium metal batteries enabled by structural design of monomer and crosslinked 3D network
13
作者 Lingwang Liu Jiangyan Xue +14 位作者 Yiwen Gao Shiqi Zhang Haiyang Zhang Keyang Peng Xin Zhang Suwan Lu Shixiao Weng Haifeng Tu Yang Liu Zhicheng Wang Fengrui Zhang Daosong Fu Jingjing Xu Qun Luo Xiaodong Wu 《Materials Reports(Energy)》 2025年第1期61-69,共9页
Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials ... Solid polymer electrolytes(SPEs)have attracted much attention for their safety,ease of packaging,costeffectiveness,excellent flexibility and stability.Poly-dioxolane(PDOL)is one of the most promising matrix materials of SPEs due to its remarkable compatibility with lithium metal anodes(LMAs)and suitability for in-situ polymerization.However,poor thermal stability,insufficient ionic conductivity and narrow electrochemical stability window(ESW)hinder its further application in lithium metal batteries(LMBs).To ameliorate these problems,we have successfully synthesized a polymerized-ionic-liquid(PIL)monomer named DIMTFSI by modifying DOL with imidazolium cation coupled with TFSI^(-)anion,which simultaneously inherits the lipophilicity of DOL,high ionic conductivity of imidazole,and excellent stability of PILs.Then the tridentate crosslinker trimethylolpropane tris[3-(2-methyl-1-aziridine)propionate](TTMAP)was introduced to regulate the excessive Li^(+)-O coordination and prepare a flame-retardant SPE(DT-SPE)with prominent thermal stability,wide ESW,high ionic conductivity and abundant Lit transference numbers(t_(Li+)).As a result,the LiFePO_(4)|DT-SPE|Li cell exhibits a high initial discharge specific capacity of 149.60 mAh g^(-1)at 0.2C and 30℃with a capacity retention rate of 98.68%after 500 cycles.This work provides new insights into the structural design of PIL-based electrolytes for long-cycling LMBs with high safety and stability. 展开更多
关键词 Polymerized ionic liquid Solid polymer electrolyte structural design Crosslinked 3D network Lithium metal battery
在线阅读 下载PDF
Rapid post-earthquake safety assessment of low-rise reinforced concrete structures
14
作者 Koji Tsuchimoto Yasutaka Narazaki Billie F.Spencer,Jr. 《Earthquake Engineering and Engineering Vibration》 2025年第1期101-112,共12页
Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To ... Many countries throughout the world have experienced large earthquakes,which cause building damage or collapse.After such earthquakes,structures must be inspected rapidly to judge whether they are safe to reoccupy.To facilitate the inspection process,the authors previously developed a rapid building safety assessment system using sparse acceleration measurements for steel framed buildings.The proposed system modeled nonlinearity in the measurement data using a calibrated simplified lumped-mass model and convolutional neural networks(CNNs),based on which the buildinglevel damage index was estimated rapidly after earthquakes.The proposed system was validated for a nonlinear 3D numerical model of a five-story steel building,and later for a large-scale specimen of an 18-story building in Japan tested on the E-Defense shaking table.However,the applicability of the safety assessment system for reinforced concrete(RC)structures with complex hysteretic material nonlinearity has yet to be explored;the previous approach based on a simplified lumpedmass model with a Bouc-Wen hysteretic model does not accurately represent the inherent nonlinear behavior and resulting damage states of RC structures.This study extends the rapid building safety assessment system to low-rise RC moment resisting frame structures representing typical residential apartments in Japan.First,a safety classification for RC structures based on a damage index consistent with the current state of practice is defined.Then,a 3D nonlinear numerical model of a two-story moment frame structure is created.A simplified lumped-mass nonlinear model is developed and calibrated using the 3D model,incorporating the Takeda degradation model for the RC material nonlinearity.This model is used to simulate the seismic response and associated damage sensitive features(DSF)for random ground motion.The resulting database of responses is used to train a convolutional neural network(CNN)that performs rapid safety assessment.The developed system is validated using the 3D nonlinear analysis model subjected to historical earthquakes.The results indicate the applicability of the proposed system for RC structures following seismic events. 展开更多
关键词 rapid post-earthquake safety assessment ACCELERATION interstory drift angle damage sensitive feature convolutional neural network RC structure simplified non-linear analysis model Takeda degradation model
在线阅读 下载PDF
A stepwise optimization method for topology structure of fluid machinery network
15
作者 Wei Gao Xuliang Jing +3 位作者 Jing Chen Hongxiong Li Yubin Sun Dongyuan Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第11期35-45,共11页
The circulating water system is widely used as the cooling system in the process industry,which has the characteristics of high water and power consumption,and its energy consumption level has an important impact on t... The circulating water system is widely used as the cooling system in the process industry,which has the characteristics of high water and power consumption,and its energy consumption level has an important impact on the economic performance of the whole system.Pump network and water turbine network constitute the work network of the circulating water system,that is,the fluid machinery network.Based on the previous studies,this paper proposes a stepwise method to optimize the fluid machinery network,that is,to optimize the network structure by using the recoverable pressure-head curve of the branch,and consider the recovery of adjustable resistance at the valve of each branch,so as to further reduce energy consumption and water consumption.The calculation result of the case shows that the topology structure optimization can further reduce the operation cost and the annual capital cost on the basis of the fixed structure optimization,and the total annualized cost can be reduced by 30.04%.The optimization result of different flow shows that both the pump network and the water turbine network tend to series structure at a low flow rate whereas to parallel structure at a high flow rate. 展开更多
关键词 Fluid machinery network Recoverable pressure head Topology structure MODEL OPTIMIZATION Systems engineering
在线阅读 下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
16
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3D road model structure recognition GIS
在线阅读 下载PDF
Graph Convolutional Networks Embedding Textual Structure Information for Relation Extraction
17
作者 Chuyuan Wei Jinzhe Li +2 位作者 Zhiyuan Wang Shanshan Wan Maozu Guo 《Computers, Materials & Continua》 SCIE EI 2024年第5期3299-3314,共16页
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,... Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous. 展开更多
关键词 Relation extraction graph convolutional neural networks dependency tree dynamic structure attention
在线阅读 下载PDF
Analysis of Urban Agglomeration Network Structure Based on Baidu Migration Data: A Case Study of the Guangdong-Hong Kong-Macao Greater Bay Urban Agglomeration
18
作者 XIA Yuan WANG Bin 《Journal of Landscape Research》 2024年第4期47-50,共4页
The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure ... The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data. 展开更多
关键词 Baidu migration data Social network analysis Urban agglomeration network structure Greater Bay Area urban agglomeration
在线阅读 下载PDF
Image-based quantitative probing of 3D heterogeneous pore structure in CBM reservoir and permeability estimation with pore network modeling
19
作者 Peng Liu Yulong Zhao +5 位作者 Zhengduo Zhao Huiming Yang Baisheng Nie Hengyi He Quangui Li Guangjie Bao 《International Journal of Coal Science & Technology》 CSCD 2024年第5期121-141,共21页
Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is... Coalbed methane(CBM)recovery is attracting global attention due to its huge reserve and low carbon burning benefits for the environment.Fully understanding the complex structure of coal and its transport properties is crucial for CBM development.This study describes the implementation of mercury intrusion and μ-CT techniques for quantitative analysis of 3D pore structure in two anthracite coals.It shows that the porosity is 7.04%-8.47%and 10.88%-12.11%,and the pore connectivity is 0.5422-0.6852 and 0.7948-0.9186 for coal samples 1 and 2,respectively.The fractal dimension and pore geometric tortuosity were calculated based on the data obtained from 3D pore structure.The results show that the pore structure of sample 2 is more complex and developed,with lower tortuosity,indicating the higher fluid deliverability of pore system in sample 2.The tortuosity in three-direction is significantly different,indicating that the pore structure of the studied coals has significant anisotropy.The equivalent pore network model(PNM)was extracted,and the anisotropic permeability was estimated by PNM gas flow simulation.The results show that the anisotropy of permeability is consistent with the slice surface porosity distribution in 3D pore structure.The permeability in the horizontal direction is much greater than that in the vertical direction,indicating that the dominant transportation channel is along the horizontal direction of the studied coals.The research results achieve the visualization of the 3D complex structure of coal and fully capture and quantify pore size,connectivity,curvature,permeability,and its anisotropic characteristics at micron-scale resolution.This provides a prerequisite for the study of mass transfer behaviors and associated transport mechanisms in real pore structures. 展开更多
关键词 CT image Heterogeneous pore structure Pore network model Coal permeability Coalbed methane
在线阅读 下载PDF
Constructing interlaced network structure by grain boundary corrosion methods on CrCoNiFe alloy for high-performance oxygen evolution reaction and urea oxidation reaction
20
作者 Qiancheng Liu Feng Zhao +6 位作者 Xulin Yang Jie Zhu Sudong Yang Lin Chen Peng Zhao Qingyuan Wang Qian Zhang 《Journal of Materials Science & Technology》 CSCD 2024年第36期97-107,共11页
Corrosion engineering is an effective way to improve the oxygen evolution reaction(OER)activity of al-loys.However,the impact of grain boundary corrosion on the structure and electrochemical performance of alloy is st... Corrosion engineering is an effective way to improve the oxygen evolution reaction(OER)activity of al-loys.However,the impact of grain boundary corrosion on the structure and electrochemical performance of alloy is still unknown.Herein,the vacuum arc-melted CrCoNiFe alloys with interlaced network struc-tures via grain boundary corrosion methods were fabricated.The grain boundaries that existed as de-fects were severely corroded and an interlaced network structure was formed,promoting the exposure of the active site and the release of gas bubbles.Besides,the(oxy)hydroxides layer(25 nm)on the sur-face could act as the true active center and improve the surface wettability.Benefiting from the unique structure and constructed surface,the CrCoNiFe-12 affords a high urea oxidation reaction(UOR)perfor-mance with the lowest overpotential of 250 mV at 10 mA/cm^(2)in 1 M KOH adding 0.33 M urea.The CrCoNiFe-12||Pt only required a cell voltage of 1.485 V to afford 10 mA/cm^(2)for UOR and long-term sta-bility of 100 h at 10 mA/cm^(2)(27.6 mV decrease).These findings offer a facile strategy for designing bulk multiple-principal-element alloy electrodes for energy conversion. 展开更多
关键词 Grain boundary corrosion Interlaced network structures(oxy)hydroxides layer Urea oxidation reaction
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部