Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or...Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.展开更多
AIM:To elucidate the manifestations and associated complications observed in patients with intraocular silicone oil(SO)emulsification through multiple imaging modalities.METHODS:This single-center,observational,retros...AIM:To elucidate the manifestations and associated complications observed in patients with intraocular silicone oil(SO)emulsification through multiple imaging modalities.METHODS:This single-center,observational,retrospective study included 116 patients who underwent pars plana vitrectomy(PPV)with SO injection for retinal detachment(RD),followed by subsequent SO removal at the Second Hospital of Hebei Medical University from January 2013 to January 2023.Comprehensive records of ophthalmic examinations utilizing multiple imaging techniques were maintained.RESULTS:The study comprised 56 females and 60 males,with a mean age of 52.75±13.6y.The mean follow-up duration for SO tamponade was 9.04±11.33mo(range:1-84mo).Among the participants,59 patients were diagnosed with SO emulsification,while 57 patients were in the SO unemulsified group.Patients with SO emulsification had a significantly prolonged SO tamponade duration(P<0.01).Multiple imaging techniques revealed notable signs of SO emulsification and its complications,such as 4 cases(3.4%)with posterior corneal SO-like keratic precipitates(KP)observed by anterior segment photography,23 cases(19.8%)exhibiting spherical high-reflection signals in the inter-retina,retinal pigment epithelium,or choroid detected by Spectralis spectral domain optical coherence tomography(SD-OCT),4 cases(3.4%)showing slow movement of emulsified SO droplets within retinal vessels during fluorescein angiography(FFA),plain and enhanced head magnetic resonance imaging(MRI)images of these four patients did not detect emulsified SO in the lateral ventricles,suprasellar cistern,subarachnoid space,third ventricle,fourth ventricle,or other intracranial locations.CONCLUSION:Intraocular emulsified SO can lead to damage in both anterior and posterior segment tissues,encompassing corneal degeneration,cataracts,glaucoma,retinal and choroid inflammation.Objective multiple imaging techniques such as anterior segment photography,SD-OCT,FFA,and MRI offer comprehensive evaluation and diagnosis of SO emulsification and its associated complications.展开更多
Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant...Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.展开更多
BACKGROUND Cataracts are a common ophthalmic disease and postoperative vision recovery is crucial to patient quality of life.Rational and efficient care models play an impor-tant role in promoting vision recovery.AIM ...BACKGROUND Cataracts are a common ophthalmic disease and postoperative vision recovery is crucial to patient quality of life.Rational and efficient care models play an impor-tant role in promoting vision recovery.AIM To evaluate the clinical effectiveness of procedural nursing care combined with communication intervention in vision recovery after cataract ultrasound emulsi-fication.METHODS A randomized controlled study was conducted on 100 patients with cataracts who underwent ultrasound emulsification surgery.They were randomly assigned to an experimental group or a control group.The experimental group received procedural nursing combined with Connect,Introduce,Communicate,Ask,Respond,Exit(CICARE)communication intervention,whereas the control group received conventional nursing.The effectiveness of the nursing model was assessed by comparing differences in vision recovery,pain scores,and mental health status between the two groups.RESULTS It was found that over time the visual acuity of patients in both groups gradually recovered and patients in the experimental group had lower pain scores and superior mental health status than the control group(P<0.05).CONCLUSION Procedural nursing combined with CICARE communication intervention has positive effects on vision recovery in patients after cataract ultrasound emulsification.展开更多
The relationship between dialkylphosphinic acid structure and their loading capacity for HREEs and emulsification phenomena has rarely been studied.In this paper,we took Lu extraction as an example to study the effect...The relationship between dialkylphosphinic acid structure and their loading capacity for HREEs and emulsification phenomena has rarely been studied.In this paper,we took Lu extraction as an example to study the effect of β,γ,δ-substituents of dialkylphosphinic acids on their loading capacity and anti-emulsification performance for HREEs.To discuss conveniently,the dialkylphosphinic acids were classified into two groups:β-substituent group(P208,INET-1,P218,USTB-1 and P227)and γ,δ-substituent group(P218,P2132 and Cyanex 272).For β-substituent group extractants,their loading capacities are in the order P208(299.7 mg/L)≈INET-1(299.5 mg/L)>P218(270.8 mg/L)>>USTB-1(163.1 mg/L)>P227(151.4 mg/L),while their anti-emulsification/gelation performances are just in the opposite order P227>USTB-1>P218>P208≈INET-1 under the studied conditions.For γ,δ-substituent group extractants,their loading capacities are in the order P218(270.8 mg/L)>P2132(192.3 mg/L)>Cyanex272(131.7 mg/L),while the anti-emulsification performance of P218 is better than those of P2132 and Cyanex 272.The loading capacity data given in the parentheses are obtained through repeatedly extracting Lu from ~4×10^(-4)mol/L of Lu aqueous feed solution with initial pH of 2.40 by 0.01 mol/L extractant at phase ratio A/O of 1:1.展开更多
Objective:To analyze the efficacy of ultrasonic emulsification and small incision cataract extracapsular extraction in cataract patients.Methods:96 cataract patients admitted from May 2021 to May 2023 were selected an...Objective:To analyze the efficacy of ultrasonic emulsification and small incision cataract extracapsular extraction in cataract patients.Methods:96 cataract patients admitted from May 2021 to May 2023 were selected and randomly grouped into group A(ultrasonic emulsification)and group B(small-incision extracapsular cataract extraction),with 48 cases each.Results:At 1 week,1-month,and 3 months post-operation,the visual acuity of group A was higher and the astigmatism value was lower than that of group B(P<0.05);at 12h,24h,and 48h post-operation,the intraocular pressure of group A was higher than that of group B(P<0.05);the thickness of macular area of group A was lower than that of group B at 1 week and 1-month post-operation(P<0.05).Conclusion:Ultrasonic emulsification in cataract patients was slightly better than small incision cataract extracapsular extraction in correcting astigmatism,improving visual acuity,and regulating macular thickness.However,due to the high energy of ultrasonic emulsification,the risk of complications such as high postoperative intraocular pressure was higher.Small-incision extracapsular cataract extraction has better application value in economically disadvantaged areas.展开更多
Objective:To evaluate the therapeutic effect of cataract ultrasonic emulsification(PE)combined with atrial angle separation(CSS)for primary angle-closure glaucoma(PACG).Methods:78 patients with PACG admitted to the ho...Objective:To evaluate the therapeutic effect of cataract ultrasonic emulsification(PE)combined with atrial angle separation(CSS)for primary angle-closure glaucoma(PACG).Methods:78 patients with PACG admitted to the hospital between October 2021 and October 2023 were selected and grouped by randomized numerical table;39 cases were counted in the observation group and selected PE combined with CSS surgery;39 cases were counted in the reference group and selected PE combined with trabeculectomy and the total effective rate,the state of the atrial angle,the clinical indexes,the degree of ocular symptoms,and the complication rate were compared.Results:The total effective rate of the observation group was higher than that of the reference group,and the percentage of the wide atrial angle of the atrial angle status was higher than that of the reference group;3 months after the operation,the logarithm of the minimum angle of resolution(Log MAR)and intraocular pressure of the observation group was lower than that of the reference group,and the central anterior chamber depth(ACD)was greater than that of the reference group;the scores of the degree of ocular symptoms of the observation group were lower than that of the reference group,and the rate of complication was lower than that of the reference group(P<0.05).Conclusion:PE combined with CSS surgical treatment for PACG patients can improve the efficacy of treatment,improve the state of the patients’atrial angles,and restore the ocular function indexes.It can alleviate the ocular symptoms as soon as possible and has a high surgical safety.展开更多
In this review, our recent work in phase inversion emulsification (PIE) for polymer (especially epoxy resin) waterborne dispersions is summarized. Based on experimental results about PIE process, the physical mode...In this review, our recent work in phase inversion emulsification (PIE) for polymer (especially epoxy resin) waterborne dispersions is summarized. Based on experimental results about PIE process, the physical model is proposed which can guide the synthesis of the waterborne dispersions such as polymer/nanoparticle composite dispersion. In the presence of a latent curing catalyst, PIE can give a crosslinkable epoxy resin waterborne dispersion. The dispersions can form cured transparent coatings with some unique properties such as UV shielding. They are promising in functional coatings, waterborne resin matrices for composites, and sizing for high performance fibers.展开更多
The aim of this study is to report and analyze the factors related with earlier occurrence of silicone oil(SO) emulsification in patients underwent pars plana vitrectomy and SO injection in our hospital. We retrospect...The aim of this study is to report and analyze the factors related with earlier occurrence of silicone oil(SO) emulsification in patients underwent pars plana vitrectomy and SO injection in our hospital. We retrospectively reviewed consecutive case series undergone both SO injection and removal in our hospital, and 182 ones were eligible. Possible related independent factors included: macula status(on/off), concomitant phacoemulsification with the surgery of SO tamponading, concomitant status of proliferative vitreoretinopathy, combined surgery of retinotomy, time to have emulsification(<6 mo/≥6 mo after primary SO injection), route of SO injection(anterior/posterior), lens status(aphakic/pseudophakic/phakic), anesthesia(local/general), brands and type of SO, with/without episcleral cryotherapy, with/without hypertension, with/without diabetes, with/without intraoperative use of triamcinolone acetonide. The study revealed that brand and type of SO was the significant factor related with earlier emulsification of SO. Further study was warranted to find out the underlying causes.展开更多
Reducing the oil-water interfacial tension(IFT)to ultra-low is believed the primary mechanism for surfactant-based enhanced oil recovery(EOR)process.However,field trials have shown that low concentration surfactant fl...Reducing the oil-water interfacial tension(IFT)to ultra-low is believed the primary mechanism for surfactant-based enhanced oil recovery(EOR)process.However,field trials have shown that low concentration surfactant flooding can also improve oil recovery without ultra-low IFT.To clarify the mechanism behind,the currently-used surfactant,naphthenic arylsulfonate(NAS),was used to unravel its function during surfactant flooding from the horizon of micron-and nano-scale.The solubilization capacity of NAS micelle to petroleum fractions was evaluated through light absorbance strategy,smallangle neutron scattering,dynamic light scattering and transmission electron microscopy.It was found that micellar solubilization plays a significant role during the surfactant flooding.In-situ emulsification was visualized in microfluidics with three types of microchips,respectively.A series of displacement tests were carried out with NAS solution pumping into oil-saturated chip.The results show that in-situ emulsification improve oil recovery mainly through blocking and entrainment effects.Results from this work aid in understanding the interaction between surfactant solution and petroleum fractions at low surfactant concentration,which is helpful for design surfactant-based displacing system for EOR process.展开更多
A new reactor with integrated conventional slurry stirred reactor and ceramic external membrane emulsification system, was introduced in this paper. Toluene and toluene containing surfactant was separately used as dis...A new reactor with integrated conventional slurry stirred reactor and ceramic external membrane emulsification system, was introduced in this paper. Toluene and toluene containing surfactant was separately used as dispersed phase for preparation of emulsions. Two kinds of emulsions were prepared and compared. The volume average sizes of prepared emulsions were 3.53μm and 3.6μm respectively. The results showed that the droplet sizes of two kinds of emulsions were similar, but the monodispersed emulsion was only obtained with addition of surfactant into the dispersed phase.展开更多
AIM:To investigate the rates of emulsification in silicone oil(SO)tamponades of differing viscosities used during pars plana vitrectomy(PPV)in the treatment of complicated vitreoretinal diseases.METHODS:This study was...AIM:To investigate the rates of emulsification in silicone oil(SO)tamponades of differing viscosities used during pars plana vitrectomy(PPV)in the treatment of complicated vitreoretinal diseases.METHODS:This study was a prospective randomized clinical trial.Totally 290 cases with greater likelihoods of secondary detachment were included and randomly grouped into either Siluron 2000(n=143)or Siluron 5000(n=147)SO tamponades with 23-gauge PPV.Patient followups and data analyses were conducted 1,3,6,and 12 mo post-surgery.RESULTS:The time of the SO emulsification ranged from 1 to 17 mo,with a mean of 7.3±4.2 mo.The Siluron 5000 group showed a slower emulsification rate in comparison to the Siluron 2000 group.The Siluron 2000 group took a shorter time to show signs of emulsification,necessitating earlier SO removal.However,there were no significant differences in the occurrence of complications,including secondary retinal detachment,cataract,corneal abnormality,high intraocular pressure and hypotony.CONCLUSION:The Siluron 2000 SO tamponade shows a faster rate of emulsification than the Siluron 5000 SO,necessitating earlier removal.Both groups show similar results in terms of anatomical success and visual acuity outcome,and there is no significant difference between the SOs regarding the occurrence of complications.展开更多
The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment...The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment and difficulties for the cleanup of marine emergency equipment.The realization observation of emulsification crude oil will increase the response speed of marine emergency response.Therefore,we set up crude oil emulsification samples to study the physical property in laboratory and conducted radar measurements at different incidence angles in outdoor.The radar is C band in resolution of 0.7 m by 0.7 m.A fully polarimetric scatterometer(HH,VV,and VH/HV)is mounted at 1.66 m(minimum altitude)height at an incidence angle between 35°and 60°.An asphalt content of less than 3%crude oil and the filtered seawater were used to the outdoor emulsification scattering experiment.The measurement results are as follows.The water content can be used to describe the process of emulsification and it is easy to measure.Wind speed,asphalt content,seawater temperature,and photo-oxidation affect the emulsifying process of crude oil,and affects the normalized radar cross section(NRCS)of oil film but wind is not the dominant factor.It is the first time to find that the emulsification of crude oil results in an increase of NRCS.展开更多
As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to g...As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2× 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsifica-tion activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.展开更多
Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tri...Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.展开更多
A novel method to prepare macroporous TiO2 ceramic, based on membrane emulsification was reported.To solve the paradox between the instability of nonaqueous emulsion and long emulsification time required by themembran...A novel method to prepare macroporous TiO2 ceramic, based on membrane emulsification was reported.To solve the paradox between the instability of nonaqueous emulsion and long emulsification time required by themembrane emulsification, a two-stage ceramic membrane jet-flow emulsification .was. proposed. Discussion wasconducted on the evolution of droplet size with time, which followed the Ostwalcl npemng theory. And a monodispersed nonaqueous emulsion with an average droplet size of 1.6μm could beprepared. Using the emulsion, as atemplate, TiO2 ceramics with an average pore size ot 1.1 μm were obtaineed. Tne material could be prospectivelyused for preparation of catalysts, adsorbents, and membranes.展开更多
This research studied the initiator efficiency for producing polymeric particles of poly(styrene-co-methyl methacrylate)copolymers by a Shirasu porous glass membrane(SPG)emulsification technique followed by suspension...This research studied the initiator efficiency for producing polymeric particles of poly(styrene-co-methyl methacrylate)copolymers by a Shirasu porous glass membrane(SPG)emulsification technique followed by suspension copolymerization.BPO,ADVN,and AIBN were used as initiators and we found that BPO is the most suitable initiator.Copolymers for various feed ratios of styrene/methyl methacrylate were thus synthesized by benzoyl peroxide,and their copolymer particle size,molecular weight distribution and pat-ride size distribution were characterized.Then n-BMA or 2-EHMA was added as the third monomer to decrease the terpolymer glass transition temperature.This article describes the preparation technique,recipes and polymerization conditions for producing both copolymer and terpolymer particles,particle size changes,the corresponding particle morphologies and glass transition temperatures.展开更多
The mechanism of phase inversion emulsification process (PIE) was studied for waterborne dispersion of highly viscous epoxy resin using non-ionic polymeric surfactants. Drop deformation and breakup, rheological prop...The mechanism of phase inversion emulsification process (PIE) was studied for waterborne dispersion of highly viscous epoxy resin using non-ionic polymeric surfactants. Drop deformation and breakup, rheological properties, conductivity, and particle size measurements reveal the micro-structural transition amid emulsification. It is revealed that strong flow causes water drop to burst with the formation of droplets and huge interface. Phase inversion corresponds to an abrupt rheological transition from a type of viscous melt with weak elasticity to a highly elastic type of aqueous gel. This implies that the phase inversion equivalent to a curvature inversion. Based on this, a geometric model is postulated to correlate process variables to the particle size. The coverage and conformation of the surfactant plays key role for the particle size of the final emulsion. The interactions of thermodynamic and hydrodynamic effects are also discussed. It is concluded that the thermodynamics control the PIE while the hydrodynamics drives the creation of interface and involves every step of PIE.展开更多
The phase inversion emulsification technique (PIET) is an effective physical method for preparing waterborne dispersions of polymer resins. Some results concerning the preparation of bisphenol A epoxy resin waterborne...The phase inversion emulsification technique (PIET) is an effective physical method for preparing waterborne dispersions of polymer resins. Some results concerning the preparation of bisphenol A epoxy resin waterborne dispersions by PIET in our laboratory were summarized. Electrical properties, rheological behavior and morphological evolution during phase inversion progress were systematically characterized. The effects of the emulsifier concentration and emulsification temperature on phase inversion progress and the structural features of the waterborne particles were studied as well. The deformation and break up of water drops in a shear field were analyzed in terms of micro-theology, while the interaction and coalescence dynamics of water drops were discussed in terms of DLVO theory and Smoluchowski effective collision theory, respectively. Based on the experimental results and theoretical analysis, a physical model of phase inversion progress was suggested, by which the effects of the parameters on phase inversion progress and the structural features of the waterborne particles were interpreted and predicted.展开更多
In this study,oil spill experiments were performed in a water tank to determine changes in the surface scattering characteristics during the emulsification of oil spills.A C-band fully-polarimetric microwave scatterom...In this study,oil spill experiments were performed in a water tank to determine changes in the surface scattering characteristics during the emulsification of oil spills.A C-band fully-polarimetric microwave scatterometer and a vector network analyzer were used to observe films of the following oils:crude oil with an asphalt content below3%that is prone to emulsification(type A),fresh crude oil extracted from an oilfield(type B),and industrial crude oil that was dehydrated and purified(type C).The difference in the backscatter results between the emulsified oil film and the calm water surface under C-band microwaves and the influence of the emulsification of the oil film on the backscatter were analyzed in detail.The results demonstrate that under a low-wind and no-waves condition(the maximum wave height was below than 3 mm),the emulsification of crude oil could modulated the backscatter through changes in the surface roughness and the dielectric constant,where the surface roughness had the dominant effect.The surface backscatters of the type B oil were greater than that of the type C oil in both the emulsified and non-emulsified states.In the non-emulsified state,the average differences in the backscatter between the type B and C oils were 2.19 dB,2.63 dB,and 2.21 dB for the polarization modes of VV,HH,and HV/VH,respectively.Smaller corresponding average differences of 0.98 dB,1.49 dB,and 1.5 dB were found for the emulsified state with a 20%moisture constant for the oil film.The results demonstrated that the surface roughness of the different oil films could vary due to the differences in the oil compositions and the oil film properties,which in turn affect the backscatter of the oil film surface.展开更多
基金Project supported by the National Natural Science Foundation of China(52074031)the Key Research and Development Program of Shandong Province(ZR2021MB051,ZR2020ME256)the Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education(GCP202117)。
文摘Solvent extraction is the main method used to separate and purify rare earth elements.In the process of rare earths extraction,emulsification often generated due to the instability of the aqueous and organic phases or improper operating conditions.Once emulsification occurs,it would not only lead to low rare earths recovery efficiency,small product quantities,high production costs and the losing of extractant and rare earth resources,but also result in serious environmental pollution.Therefore,it is very important to study the micro-mechanisms of emulsification and establish new methods to prevent emulsification at the source.In this paper,possible factors resulting in emulsification,such as the compositions and properties of the organic and aqueous phases,the operating conditions of the rare earths extraction are reviewed.The micro-mechanisms of emulsification are summarized basing on the microscopic structures in the bulk phase,aggregations of the extractants at the organic-aqueous interface,spectral characterizations and computational simulations.On this basis,new formation mechanisms are proposed for emulsification.Preliminary explorations are employed to verify the correctness of these new viewpoints.Finally,future directions for studies of the emulsification micro-mechanism are proposed.This study provides a theoretical basis for further understanding the micro-mechanisms of interfacial instability resulting in emulsification in the process of rare earths extraction.
基金Supported by the Natural Science Foundation of Hebei Province(No.H2023206907).
文摘AIM:To elucidate the manifestations and associated complications observed in patients with intraocular silicone oil(SO)emulsification through multiple imaging modalities.METHODS:This single-center,observational,retrospective study included 116 patients who underwent pars plana vitrectomy(PPV)with SO injection for retinal detachment(RD),followed by subsequent SO removal at the Second Hospital of Hebei Medical University from January 2013 to January 2023.Comprehensive records of ophthalmic examinations utilizing multiple imaging techniques were maintained.RESULTS:The study comprised 56 females and 60 males,with a mean age of 52.75±13.6y.The mean follow-up duration for SO tamponade was 9.04±11.33mo(range:1-84mo).Among the participants,59 patients were diagnosed with SO emulsification,while 57 patients were in the SO unemulsified group.Patients with SO emulsification had a significantly prolonged SO tamponade duration(P<0.01).Multiple imaging techniques revealed notable signs of SO emulsification and its complications,such as 4 cases(3.4%)with posterior corneal SO-like keratic precipitates(KP)observed by anterior segment photography,23 cases(19.8%)exhibiting spherical high-reflection signals in the inter-retina,retinal pigment epithelium,or choroid detected by Spectralis spectral domain optical coherence tomography(SD-OCT),4 cases(3.4%)showing slow movement of emulsified SO droplets within retinal vessels during fluorescein angiography(FFA),plain and enhanced head magnetic resonance imaging(MRI)images of these four patients did not detect emulsified SO in the lateral ventricles,suprasellar cistern,subarachnoid space,third ventricle,fourth ventricle,or other intracranial locations.CONCLUSION:Intraocular emulsified SO can lead to damage in both anterior and posterior segment tissues,encompassing corneal degeneration,cataracts,glaucoma,retinal and choroid inflammation.Objective multiple imaging techniques such as anterior segment photography,SD-OCT,FFA,and MRI offer comprehensive evaluation and diagnosis of SO emulsification and its associated complications.
基金financially supported by National Natural Science Foundation of China(No.22302229)Beijing Municipal Excellent Talent Training Funds Youth Advanced Individual Project(No.2018000020124G163)。
文摘Emulsification is one of the important mechanisms of surfactant flooding. To improve oil recovery for low permeability reservoirs, a highly efficient emulsification oil flooding system consisting of anionic surfactant sodium alkyl glucosyl hydroxypropyl sulfonate(APGSHS) and zwitterionic surfactant octadecyl betaine(BS-18) is proposed. The performance of APGSHS/BS-18 mixed surfactant system was evaluated in terms of interfacial tension, emulsification capability, emulsion size and distribution, wettability alteration, temperature-resistance and salt-resistance. The emulsification speed was used to evaluate the emulsification ability of surfactant systems, and the results show that mixed surfactant systems can completely emulsify the crude oil into emulsions droplets even under low energy conditions. Meanwhile,the system exhibits good temperature and salt resistance. Finally, the best oil recovery of 25.45% is achieved for low permeability core by the mixed surfactant system with a total concentration of 0.3 wt%while the molar ratio of APGSHS:BS-18 is 4:6. The current study indicates that the anionic/zwitterionic mixed surfactant system can improve the oil flooding efficiency and is potential candidate for application in low permeability reservoirs.
文摘BACKGROUND Cataracts are a common ophthalmic disease and postoperative vision recovery is crucial to patient quality of life.Rational and efficient care models play an impor-tant role in promoting vision recovery.AIM To evaluate the clinical effectiveness of procedural nursing care combined with communication intervention in vision recovery after cataract ultrasound emulsi-fication.METHODS A randomized controlled study was conducted on 100 patients with cataracts who underwent ultrasound emulsification surgery.They were randomly assigned to an experimental group or a control group.The experimental group received procedural nursing combined with Connect,Introduce,Communicate,Ask,Respond,Exit(CICARE)communication intervention,whereas the control group received conventional nursing.The effectiveness of the nursing model was assessed by comparing differences in vision recovery,pain scores,and mental health status between the two groups.RESULTS It was found that over time the visual acuity of patients in both groups gradually recovered and patients in the experimental group had lower pain scores and superior mental health status than the control group(P<0.05).CONCLUSION Procedural nursing combined with CICARE communication intervention has positive effects on vision recovery in patients after cataract ultrasound emulsification.
基金Project supported by the National Natural Science Foundation of China(51974026,21301104)the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization。
文摘The relationship between dialkylphosphinic acid structure and their loading capacity for HREEs and emulsification phenomena has rarely been studied.In this paper,we took Lu extraction as an example to study the effect of β,γ,δ-substituents of dialkylphosphinic acids on their loading capacity and anti-emulsification performance for HREEs.To discuss conveniently,the dialkylphosphinic acids were classified into two groups:β-substituent group(P208,INET-1,P218,USTB-1 and P227)and γ,δ-substituent group(P218,P2132 and Cyanex 272).For β-substituent group extractants,their loading capacities are in the order P208(299.7 mg/L)≈INET-1(299.5 mg/L)>P218(270.8 mg/L)>>USTB-1(163.1 mg/L)>P227(151.4 mg/L),while their anti-emulsification/gelation performances are just in the opposite order P227>USTB-1>P218>P208≈INET-1 under the studied conditions.For γ,δ-substituent group extractants,their loading capacities are in the order P218(270.8 mg/L)>P2132(192.3 mg/L)>Cyanex272(131.7 mg/L),while the anti-emulsification performance of P218 is better than those of P2132 and Cyanex 272.The loading capacity data given in the parentheses are obtained through repeatedly extracting Lu from ~4×10^(-4)mol/L of Lu aqueous feed solution with initial pH of 2.40 by 0.01 mol/L extractant at phase ratio A/O of 1:1.
文摘Objective:To analyze the efficacy of ultrasonic emulsification and small incision cataract extracapsular extraction in cataract patients.Methods:96 cataract patients admitted from May 2021 to May 2023 were selected and randomly grouped into group A(ultrasonic emulsification)and group B(small-incision extracapsular cataract extraction),with 48 cases each.Results:At 1 week,1-month,and 3 months post-operation,the visual acuity of group A was higher and the astigmatism value was lower than that of group B(P<0.05);at 12h,24h,and 48h post-operation,the intraocular pressure of group A was higher than that of group B(P<0.05);the thickness of macular area of group A was lower than that of group B at 1 week and 1-month post-operation(P<0.05).Conclusion:Ultrasonic emulsification in cataract patients was slightly better than small incision cataract extracapsular extraction in correcting astigmatism,improving visual acuity,and regulating macular thickness.However,due to the high energy of ultrasonic emulsification,the risk of complications such as high postoperative intraocular pressure was higher.Small-incision extracapsular cataract extraction has better application value in economically disadvantaged areas.
文摘Objective:To evaluate the therapeutic effect of cataract ultrasonic emulsification(PE)combined with atrial angle separation(CSS)for primary angle-closure glaucoma(PACG).Methods:78 patients with PACG admitted to the hospital between October 2021 and October 2023 were selected and grouped by randomized numerical table;39 cases were counted in the observation group and selected PE combined with CSS surgery;39 cases were counted in the reference group and selected PE combined with trabeculectomy and the total effective rate,the state of the atrial angle,the clinical indexes,the degree of ocular symptoms,and the complication rate were compared.Results:The total effective rate of the observation group was higher than that of the reference group,and the percentage of the wide atrial angle of the atrial angle status was higher than that of the reference group;3 months after the operation,the logarithm of the minimum angle of resolution(Log MAR)and intraocular pressure of the observation group was lower than that of the reference group,and the central anterior chamber depth(ACD)was greater than that of the reference group;the scores of the degree of ocular symptoms of the observation group were lower than that of the reference group,and the rate of complication was lower than that of the reference group(P<0.05).Conclusion:PE combined with CSS surgical treatment for PACG patients can improve the efficacy of treatment,improve the state of the patients’atrial angles,and restore the ocular function indexes.It can alleviate the ocular symptoms as soon as possible and has a high surgical safety.
基金This project is supported by NSF of China(Nos. 20104008 and 29774038)State Key Laboratory of Polymer Physics and Chemistry.
文摘In this review, our recent work in phase inversion emulsification (PIE) for polymer (especially epoxy resin) waterborne dispersions is summarized. Based on experimental results about PIE process, the physical model is proposed which can guide the synthesis of the waterborne dispersions such as polymer/nanoparticle composite dispersion. In the presence of a latent curing catalyst, PIE can give a crosslinkable epoxy resin waterborne dispersion. The dispersions can form cured transparent coatings with some unique properties such as UV shielding. They are promising in functional coatings, waterborne resin matrices for composites, and sizing for high performance fibers.
文摘The aim of this study is to report and analyze the factors related with earlier occurrence of silicone oil(SO) emulsification in patients underwent pars plana vitrectomy and SO injection in our hospital. We retrospectively reviewed consecutive case series undergone both SO injection and removal in our hospital, and 182 ones were eligible. Possible related independent factors included: macula status(on/off), concomitant phacoemulsification with the surgery of SO tamponading, concomitant status of proliferative vitreoretinopathy, combined surgery of retinotomy, time to have emulsification(<6 mo/≥6 mo after primary SO injection), route of SO injection(anterior/posterior), lens status(aphakic/pseudophakic/phakic), anesthesia(local/general), brands and type of SO, with/without episcleral cryotherapy, with/without hypertension, with/without diabetes, with/without intraoperative use of triamcinolone acetonide. The study revealed that brand and type of SO was the significant factor related with earlier emulsification of SO. Further study was warranted to find out the underlying causes.
基金Natural Science Foundation of China for its financial support(grant number:U1762218)
文摘Reducing the oil-water interfacial tension(IFT)to ultra-low is believed the primary mechanism for surfactant-based enhanced oil recovery(EOR)process.However,field trials have shown that low concentration surfactant flooding can also improve oil recovery without ultra-low IFT.To clarify the mechanism behind,the currently-used surfactant,naphthenic arylsulfonate(NAS),was used to unravel its function during surfactant flooding from the horizon of micron-and nano-scale.The solubilization capacity of NAS micelle to petroleum fractions was evaluated through light absorbance strategy,smallangle neutron scattering,dynamic light scattering and transmission electron microscopy.It was found that micellar solubilization plays a significant role during the surfactant flooding.In-situ emulsification was visualized in microfluidics with three types of microchips,respectively.A series of displacement tests were carried out with NAS solution pumping into oil-saturated chip.The results show that in-situ emulsification improve oil recovery mainly through blocking and entrainment effects.Results from this work aid in understanding the interaction between surfactant solution and petroleum fractions at low surfactant concentration,which is helpful for design surfactant-based displacing system for EOR process.
基金the National Basic Research Program of China (No. 2003CB615700) the National Natural Science Foundation of China (No. 20125618).
文摘A new reactor with integrated conventional slurry stirred reactor and ceramic external membrane emulsification system, was introduced in this paper. Toluene and toluene containing surfactant was separately used as dispersed phase for preparation of emulsions. Two kinds of emulsions were prepared and compared. The volume average sizes of prepared emulsions were 3.53μm and 3.6μm respectively. The results showed that the droplet sizes of two kinds of emulsions were similar, but the monodispersed emulsion was only obtained with addition of surfactant into the dispersed phase.
基金Supported by the Natural Science Foundation of Guangdong Province of China(No.2018A030310232,18zxxt72).
文摘AIM:To investigate the rates of emulsification in silicone oil(SO)tamponades of differing viscosities used during pars plana vitrectomy(PPV)in the treatment of complicated vitreoretinal diseases.METHODS:This study was a prospective randomized clinical trial.Totally 290 cases with greater likelihoods of secondary detachment were included and randomly grouped into either Siluron 2000(n=143)or Siluron 5000(n=147)SO tamponades with 23-gauge PPV.Patient followups and data analyses were conducted 1,3,6,and 12 mo post-surgery.RESULTS:The time of the SO emulsification ranged from 1 to 17 mo,with a mean of 7.3±4.2 mo.The Siluron 5000 group showed a slower emulsification rate in comparison to the Siluron 2000 group.The Siluron 2000 group took a shorter time to show signs of emulsification,necessitating earlier SO removal.However,there were no significant differences in the occurrence of complications,including secondary retinal detachment,cataract,corneal abnormality,high intraocular pressure and hypotony.CONCLUSION:The Siluron 2000 SO tamponade shows a faster rate of emulsification than the Siluron 5000 SO,necessitating earlier removal.Both groups show similar results in terms of anatomical success and visual acuity outcome,and there is no significant difference between the SOs regarding the occurrence of complications.
基金Supported by the National Natural Science Foundation of China(No.41576032)the Major Program for the International Cooperation of the Chinese Academy of Sciences,China(No.133337KYSB20160002)partially supported by the National Natural Science Foundation of China(Nos.41576170,61371189)
文摘The emulsification of crude oil is caused by the oil flowing into the water,resulting in the increase of oil film tension,viscosity,water content,and volume,which brings great harm to the marine ecological environment and difficulties for the cleanup of marine emergency equipment.The realization observation of emulsification crude oil will increase the response speed of marine emergency response.Therefore,we set up crude oil emulsification samples to study the physical property in laboratory and conducted radar measurements at different incidence angles in outdoor.The radar is C band in resolution of 0.7 m by 0.7 m.A fully polarimetric scatterometer(HH,VV,and VH/HV)is mounted at 1.66 m(minimum altitude)height at an incidence angle between 35°and 60°.An asphalt content of less than 3%crude oil and the filtered seawater were used to the outdoor emulsification scattering experiment.The measurement results are as follows.The water content can be used to describe the process of emulsification and it is easy to measure.Wind speed,asphalt content,seawater temperature,and photo-oxidation affect the emulsifying process of crude oil,and affects the normalized radar cross section(NRCS)of oil film but wind is not the dominant factor.It is the first time to find that the emulsification of crude oil results in an increase of NRCS.
基金The project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(No. KSCX2-SW-324)
文摘As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2× 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsifica-tion activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.
基金The authors would like to acknowledge the Bu Ali Sina University and the Iran National Science Foundation:INSF,under Grant number of 99031559,for their financial supports.
文摘Surface active ionic liquids (SAILs) are considered as prominent materials in enhanced oil recovery thanks to their high interfacial activity. This study reports the preparation and applications of a nanostructure Tripodal imidazolium SAIL as an environmentally-friendly substitute to the conventional surfactants. The product has a star-like molecular structure centered by a triazine spacer, namely [(C_(4)im)_(3)TA][Cl_(3)], prepared by a one-step synthesis method and characterized with FT-IR, NMR, XRD, and SEM analysis methods. The interfacial tension of the system was decreased to about 78% at critical micelle concentration of less than 0.08 mol·dm^(−3). Increasing temperature, from 298.2 to 323.2 K, improved this capability. The solid surface wettability was changed from oil-wet to water-wet and 80% and 77% stable emulsions of crude oil–aqueous solutions were created after one day and one week, respectively. Compared to the Gemini kind homologous SAILs, the superior effects of the Tripodal SAIL were revealed and attributed to the strong hydrophobic branches in the molecule. The Frumkin adsorption isotherm precisely reproduced the generated IFT data, and accordingly, the adsorption and thermodynamic parameters were determined.
基金Supported by the National High Technology Research and Development Program of China (863 program, No.2006AA03Z534), the Postdoctoral Science Foundation of China (No.20060400927), the National Basic Research Program of China (No.2003CB6157070), the National Natural Science Foundation of China (No.20436030), Natural Science Foundation of Jiangsu Province (No.BK2006566), and Jiangsu Planned Projects for Postdoctoral Research Funds (No.0601023B).
文摘A novel method to prepare macroporous TiO2 ceramic, based on membrane emulsification was reported.To solve the paradox between the instability of nonaqueous emulsion and long emulsification time required by themembrane emulsification, a two-stage ceramic membrane jet-flow emulsification .was. proposed. Discussion wasconducted on the evolution of droplet size with time, which followed the Ostwalcl npemng theory. And a monodispersed nonaqueous emulsion with an average droplet size of 1.6μm could beprepared. Using the emulsion, as atemplate, TiO2 ceramics with an average pore size ot 1.1 μm were obtaineed. Tne material could be prospectivelyused for preparation of catalysts, adsorbents, and membranes.
文摘This research studied the initiator efficiency for producing polymeric particles of poly(styrene-co-methyl methacrylate)copolymers by a Shirasu porous glass membrane(SPG)emulsification technique followed by suspension copolymerization.BPO,ADVN,and AIBN were used as initiators and we found that BPO is the most suitable initiator.Copolymers for various feed ratios of styrene/methyl methacrylate were thus synthesized by benzoyl peroxide,and their copolymer particle size,molecular weight distribution and pat-ride size distribution were characterized.Then n-BMA or 2-EHMA was added as the third monomer to decrease the terpolymer glass transition temperature.This article describes the preparation technique,recipes and polymerization conditions for producing both copolymer and terpolymer particles,particle size changes,the corresponding particle morphologies and glass transition temperatures.
基金This project was supported by the National Natural Science Foundation of China (No. 20490220)Major State Basic Research Projects (No. 2003CB615604), Shengli Oilfield, SINOPEC.
文摘The mechanism of phase inversion emulsification process (PIE) was studied for waterborne dispersion of highly viscous epoxy resin using non-ionic polymeric surfactants. Drop deformation and breakup, rheological properties, conductivity, and particle size measurements reveal the micro-structural transition amid emulsification. It is revealed that strong flow causes water drop to burst with the formation of droplets and huge interface. Phase inversion corresponds to an abrupt rheological transition from a type of viscous melt with weak elasticity to a highly elastic type of aqueous gel. This implies that the phase inversion equivalent to a curvature inversion. Based on this, a geometric model is postulated to correlate process variables to the particle size. The coverage and conformation of the surfactant plays key role for the particle size of the final emulsion. The interactions of thermodynamic and hydrodynamic effects are also discussed. It is concluded that the thermodynamics control the PIE while the hydrodynamics drives the creation of interface and involves every step of PIE.
基金This work was supported by the National Key Project for Fundamental Research, "Macromolecular Condensed State" of Ministry of Science and Technology of China and National Natural Science Foundation of China 29774038.
文摘The phase inversion emulsification technique (PIET) is an effective physical method for preparing waterborne dispersions of polymer resins. Some results concerning the preparation of bisphenol A epoxy resin waterborne dispersions by PIET in our laboratory were summarized. Electrical properties, rheological behavior and morphological evolution during phase inversion progress were systematically characterized. The effects of the emulsifier concentration and emulsification temperature on phase inversion progress and the structural features of the waterborne particles were studied as well. The deformation and break up of water drops in a shear field were analyzed in terms of micro-theology, while the interaction and coalescence dynamics of water drops were discussed in terms of DLVO theory and Smoluchowski effective collision theory, respectively. Based on the experimental results and theoretical analysis, a physical model of phase inversion progress was suggested, by which the effects of the parameters on phase inversion progress and the structural features of the waterborne particles were interpreted and predicted.
基金The National Key R&D Program of China under contract No.2016YFC1401000The National Natural Science Foundation of China under contract Nos 41576032 and 41706208。
文摘In this study,oil spill experiments were performed in a water tank to determine changes in the surface scattering characteristics during the emulsification of oil spills.A C-band fully-polarimetric microwave scatterometer and a vector network analyzer were used to observe films of the following oils:crude oil with an asphalt content below3%that is prone to emulsification(type A),fresh crude oil extracted from an oilfield(type B),and industrial crude oil that was dehydrated and purified(type C).The difference in the backscatter results between the emulsified oil film and the calm water surface under C-band microwaves and the influence of the emulsification of the oil film on the backscatter were analyzed in detail.The results demonstrate that under a low-wind and no-waves condition(the maximum wave height was below than 3 mm),the emulsification of crude oil could modulated the backscatter through changes in the surface roughness and the dielectric constant,where the surface roughness had the dominant effect.The surface backscatters of the type B oil were greater than that of the type C oil in both the emulsified and non-emulsified states.In the non-emulsified state,the average differences in the backscatter between the type B and C oils were 2.19 dB,2.63 dB,and 2.21 dB for the polarization modes of VV,HH,and HV/VH,respectively.Smaller corresponding average differences of 0.98 dB,1.49 dB,and 1.5 dB were found for the emulsified state with a 20%moisture constant for the oil film.The results demonstrated that the surface roughness of the different oil films could vary due to the differences in the oil compositions and the oil film properties,which in turn affect the backscatter of the oil film surface.