期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
DDIRNet:robust radar emitter recognition via single domain generalization
1
作者 WU Honglin LI Xueqiong +2 位作者 HUANG Junjie JIN Ruochun TANG Yuhua 《Journal of Systems Engineering and Electronics》 2025年第2期397-404,共8页
Automatically recognizing radar emitters from com-plex electromagnetic environments is important but non-trivial.Moreover,the changing electromagnetic environment results in inconsistent signal distribution in the rea... Automatically recognizing radar emitters from com-plex electromagnetic environments is important but non-trivial.Moreover,the changing electromagnetic environment results in inconsistent signal distribution in the real world,which makes the existing approaches perform poorly for recognition tasks in different scenes.In this paper,we propose a domain generaliza-tion framework is proposed to improve the adaptability of radar emitter signal recognition in changing environments.Specifically,we propose an end-to-end denoising based domain-invariant radar emitter recognition network(DDIRNet)consisting of a denoising model and a domain invariant representation learning model(IRLM),which mutually benefit from each other.For the signal denoising model,a loss function is proposed to match the feature of the radar signals and guarantee the effectiveness of the model.For the domain invariant representation learning model,contrastive learning is introduced to learn the cross-domain feature by aligning the source and unseen domain distri-bution.Moreover,we design a data augmentation method that improves the diversity of signal data for training.Extensive experiments on classification have shown that DDIRNet achieves up to 6.4%improvement compared with the state-of-the-art radar emitter recognition methods.The proposed method pro-vides a promising direction to solve the radar emitter signal recognition problem. 展开更多
关键词 radar emitter recognition domain generalization DENOISING contrastive learning data augmentation.
在线阅读 下载PDF
Radar emitter multi-label recognition based on residual network 被引量:13
2
作者 Yu Hong-hai Yan Xiao-peng +2 位作者 Liu Shao-kun Li Ping Hao Xin-hong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期410-417,共8页
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and... In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs. 展开更多
关键词 Radar emitter recognition Image processing PARALLEL Residual network MULTI-LABEL
在线阅读 下载PDF
Attribute measure recognition approach and its applications to emitter recognition 被引量:10
3
作者 GUANXin HEYou YIXiao 《Science in China(Series F)》 2005年第2期225-233,共9页
This paper studies the emitter recognition problem. A new recognition method based on attribute measure for emitter recognition is put forward. The steps of the method are presented. The approach to determining the we... This paper studies the emitter recognition problem. A new recognition method based on attribute measure for emitter recognition is put forward. The steps of the method are presented. The approach to determining the weight coefficient is also discussed. Moreover, considering the temporal redundancy of emitter information detected by multi-sensor system, this new recognition method is generalized to multi-sensor system. A method based on the combination of attribute measure and D-S evidence theory is proposed. The implementation of D-S reasoning is always restricted by basic probability assignment function. Constructing basic probability assignment function based on attribute measure is presented in multi-sensor recognition system. Examples of recognizing the emitter purpose and system are selected to demonstrate the method proposed. Experimental results show that the performance of this new method is accurate and effective. 展开更多
关键词 attribute measure emitter recognition D-S evidence theory basic probability assignment func- tion.
原文传递
Radar emitter signal recognition based on multi-scale wavelet entropy and feature weighting 被引量:16
4
作者 李一兵 葛娟 +1 位作者 林云 叶方 《Journal of Central South University》 SCIE EI CAS 2014年第11期4254-4260,共7页
In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on m... In modern electromagnetic environment, radar emitter signal recognition is an important research topic. On the basis of multi-resolution wavelet analysis, an adaptive radar emitter signal recognition method based on multi-scale wavelet entropy feature extraction and feature weighting was proposed. With the only priori knowledge of signal to noise ratio(SNR), the method of extracting multi-scale wavelet entropy features of wavelet coefficients from different received signals were combined with calculating uneven weight factor and stability weight factor of the extracted multi-dimensional characteristics. Radar emitter signals of different modulation types and different parameters modulated were recognized through feature weighting and feature fusion. Theoretical analysis and simulation results show that the presented algorithm has a high recognition rate. Additionally, when the SNR is greater than-4 d B, the correct recognition rate is higher than 93%. Hence, the proposed algorithm has great application value. 展开更多
关键词 emitter recognition multi-scale wavelet entropy feature weighting uneven weight factor stability weight factor
在线阅读 下载PDF
Research on Radar Emitter Attribute Recognition Method 被引量:1
5
作者 GUAN Xin YI Xiao HE You 《Geo-Spatial Information Science》 2006年第1期45-48,共4页
In order to solve emitter recognition problems in a practical reconnaissance environment, attribute mathematics is introduced. The basic concepts and theory of attribute set and attribute measure are described i n det... In order to solve emitter recognition problems in a practical reconnaissance environment, attribute mathematics is introduced. The basic concepts and theory of attribute set and attribute measure are described i n detail. A new attribute recognition method based on attribute measure is prese nted in this paper. Application example is given, which demonstrates this new me thod is accurate and effective. Moreover, computer simulation for recognizing th e emitter purpose is selected, and compared with classical statistical pattern r ecognition through simulation. The excellent experimental results demonstrate t hat this is a brand-new attribute recognition method as compared to existing st atistical pattern recognition techniques. 展开更多
关键词 attribute measure attribute recognition criterion emitter recognition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部