Ammonia(NH3)has been widely recognized as a key precursor of atmospheric secondary aerosol formation.Vehicle emission is a major source of urban atmospheric NH3.With the tightening of emission standards and the growin...Ammonia(NH3)has been widely recognized as a key precursor of atmospheric secondary aerosol formation.Vehicle emission is a major source of urban atmospheric NH3.With the tightening of emission standards and the growing trend of vehicle fleet electrification,it is imperative to update the emission factors for NH3 from real-world on-road fleets.In this study,a tunnel measurement was conducted in the urban area of Tianjin,China.The fleet-average NH3 emission factor(EF)was 11.2 mg/(km·veh),significantly lower than those in previous studies,showing the benefit of emission standard updating.Through a multiple linear regression analysis,the EFs of light-duty gasoline vehicles,light-duty diesel vehicles,and heavy-duty diesel vehicles(HDDVs)were estimated to be 5.7±0.6 mg/(km·veh),40.8±5.1 mg/(km·veh),and 160.2±16.6 mg/(km·veh),respectively.Based on the results from this study,we found that HDDVs,which comprise<3%of the total vehicles may contribute approximately 22%of total NH3 emissions in Tianjin.Our results highlight NH3 emissions from HDDVs,a previously potentially overlooked source of NH3 emissions in urban areas.The actual on-road NH3 emissions from HDDVs may exceed current expectations,posing a growing concern for the future.展开更多
Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This stud...Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This study employed a simple and efficient solutionbased process to fabricate nanofibers containing aggregation-induced emission(AIE)dyes.The resulting AIE nanofibers exhibited stable and intense fluorescence,nanosecond fluorescence lifetime,and low-loss light transport when functioning as active waveguides.Additionally,crossed nanofiber intersections exhibited diffraction-limited emission spots.The AIE nanofibers demonstrate efficient and ionspecific fluorescence quenching in response to Ag^(+).These results support the development of sensing units capable of operating in liquid environments or in direct contact with skin or tissues,facilitating real-time monitoring of ion concentrations for personalized healthcare management.展开更多
Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_...Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_(4) emissions between different lakes.However,the carbon emissions and their influencing factors of different areas within a single lake remain poorly understood.Accordingly,this study investigates CO_(2) and CH_(4) emission hetero-geneity in a large floodplain lake system and distribution characteristics of associated functional microorganisms.Findings show that mean CO_(2) and CH_(4) flux values in the sub lake area were 62.03±24.21 mg/(m2·day)and 5.97±3.2μg/(m2·day),which were greater by factors of 1.78 and 2.96 compared to the water channel and the main lake area,respectively.The alpha diversity of methanogens in the sub lake area was lower than that in the main lake and water channel areas.The abundance of methanogens in bottom water layer was higher compared with the middle and surface layers.Conversely,the abundance of methane(CH_(4))-oxidizing bacteria in the surface layer was higher than that in the bottom layer.Additionally,the composition of methanogen and CH_(4)-oxidizing bacterial community,chlorophyll a(Chl-a),pH,total phosphorus(TP)and dissolved organic carbon(DOC)con-tent constituted the dominate driving factors affecting lake C emissions.Results from this study can be used to improve our understanding of lake spatial heterogeneous of CO_(2) and CH_(4) emission and the driving mechanisms within floodplain lakes under the coupling effects of functional C microorganisms and environmental factors.展开更多
Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial het...Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial heterogeneity in regional CO_(2) patterns.This study investigated the spatiotemporal distribution of atmospheric CO_(2) in Pucheng and Nanping industrial parks,Nanping City,by conducting field experiments using two coherent differential absorption lidars from 1 August to 31 October 2024.Results showed that the spatial distributions of CO_(2) emis-sions within a 3 km radius were mapped,and the local diffusion processes were clarified.CO_(2) patterns varied differently in two industrial parks over the three-month period:Average CO_(2) concentrations in non-emission areas were 422.4 ppm in Pucheng and 408.7 ppm in Nanping,with the former experiencing higher and more variable carbon emissions;Correlation analysis indicated that synthetic leather factories in Pucheng contributed more to SO_(2) and NO_(x) levels compared to the chemical plant in Nanping;In Pucheng,CO_(2) concentrations were transported from the north at ground-level wind speeds exceeding 4 m/s,while in Nanping,the concentrations dispersed gradually with increasing wind speeds;Forward trajectory simulations revealed that the peak-emission from Pucheng primarily affected southern Fujian,northeastern Jiangxi,and southern Anhui,while the peak-emission from Nanping influenced central and western Fujian and northeastern Jiangxi.Besides,emissions in both industrial parks were higher on weekdays and lower on weekends,reflecting changes in industrial activi-ties.The study underscores the potential of lidar technology for providing detailed insights into CO_(2) distribution and the interactions between emissions,wind patterns,and carbon transport.展开更多
Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other field...Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.展开更多
The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon ...The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.展开更多
Acoustic emission (AE) sensors are used to monitor tool conditions in micro-milling operations. Together with the microphone, the AE sensor can detect the tool breakage more accurately and more effectively by applyi...Acoustic emission (AE) sensors are used to monitor tool conditions in micro-milling operations. Together with the microphone, the AE sensor can detect the tool breakage more accurately and more effectively by applying the wavelet analysis. The processed tool breakage technique by AE sensor is used to perform the wavelet analysis on the experimental data. Results indicate the feasibility of using the AE signals for monitoring the tool condition in micro-milling.展开更多
Tool condition is one of the main concerns in friction stir welding (FSW), because the geometrical condition of the tool pin including size and shape is strongly connected to the microstrueture and mechanical perfor...Tool condition is one of the main concerns in friction stir welding (FSW), because the geometrical condition of the tool pin including size and shape is strongly connected to the microstrueture and mechanical performance of the weld. Tool wear occurs during FSW, especially for welding metal matrix composites with large amounts of abrasive particles, and high melting point materials, which significantly expedite tool wear and deteriorate the mechanical performance of welds. Tools with different pin-wear levels are used to weld 6061 Al alloy, while acoustic emission (AE) sensing, metallographic sectioning, and tensile testing are employed to evaluate the weld quality in various tool wear conditions. Structural characterization shows that the tool wear interferes with the weld quality and accounts for the formation of voids in the nugget zone. Tensile test analysis of samples verifies that both the ultimate tensile strength and the yield strength are adversely affected by the formation of voids in the nugget due to the tool wear. The failure location during tensile test clearly depends on the state of the tool wear, which led to the analysis of the relationships between the structure of the nugget and tool wear. AE signatures recorded during welding reveal that the AE hits concentrate on the higher amplitudes with increasing tool wear. The results show that the AE sensing provides a potentially effective method for the on-line manitoring of tool wear.展开更多
The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in...The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in academia about the establishment of "weak" and "narrow" versions of PH. Based on the panel data of application for patent of energy conservation and emission reduction(ECER) technology of Chinese city scale during 2008-2014, comprehensive energy price, pollutant emission, etc., mixed regression model and systematic generalized method of moments method were adopted, respectively,to study the impact of market-oriented and command-and-control policy tool on China's ECER technology innovation. The results show that the environmental regulation hindered the technological innovation in the immediate phase; however, it turned out to be positive in the first-lag phase. Hence, the establishment of "weak" PH is time-bounded. The command-and-control policy tool played a more positive role in promoting technological innovation in the first-lag phase than market-oriented policy tool. Therefore, "narrow" PH is not tenable. The reason is that the main participants of China's ECER technology innovation are state-owned companies and public institutions. Regionally speaking, the impact which command-and-control policy tool has on technological innovation at sight was nonsignificant in the eastern, the central, and the western regions of China whilst market-oriented policy tool had a negative effect. And market-oriented policy tool in the central region had strongest negative effect, which would diminish in the eastern region and become weakest in the western region. This was related to regional energy consumption level and the market economic vitality.展开更多
China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the gove...China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.展开更多
Emission characteristics of biogenic volatile organic compounds(BVOCs)from dominant tree species in the subtropical pristine forests of China are extremely limited.Here we conducted in situ field measurements of BVOCs...Emission characteristics of biogenic volatile organic compounds(BVOCs)from dominant tree species in the subtropical pristine forests of China are extremely limited.Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients(600-1690ma.s.l.)in the Nanling Mountains of southern China.Composition characteristics as well as seasonal and altitudinal variations were analyzed.Standardized emission rates and canopyscale emission factors were then calculated.Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season.Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees,accounting for over 70%of the total.Schima superba,Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials.The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols fromNature(MEGAN),while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model.Our results can be used to update the current BVOCs emission inventory in MEGAN,thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.展开更多
Civil aviation is one of the industries facing the greatest challenge in reaching carbon neutrality by the middle of this century,and this sector also contributes to adverse impacts on the regional air quality and hum...Civil aviation is one of the industries facing the greatest challenge in reaching carbon neutrality by the middle of this century,and this sector also contributes to adverse impacts on the regional air quality and human health.China exhibits the second highest air passenger turnover worldwide.Our understanding of civil aviation emissionsmust be urgently enhanced,and themitigation potential should be explored.In this study,on the basis of real domestic flight information for 2019,we built a greenhouse gas and air pollution emission inventory for the civil aviation sector in China with the fuel flowmethod based on the cruise and other phases.We thoroughly analyzed emissions by region,aircraft and engine types,and aircraft age,based on which we designed four measures to evaluate the abatement potential.We found that the hydrocarbon(HC),CO,NO_(x),SO_(2),particulate matter(PM)and CO_(2)emissions in 2019 reached 79.9 kt(95%CI[51.6–114.5]),176.3 kt(95%CI[114.5–248.2]),304.2 kt(95%CI[203.4–420.7]),23.2 kt(95%CI[14.2–33.7]),1.0 kt(95%CI[0.61–1.44])and 87.0 Mt(95%CI[57.4–119.6]),respectively.The cruise phase was the major emission phase,accounting for 67%-87%of the total pollutant emissions.If four measures were jointly implemented,the HC,CO,NO_(x),SO_(2),PM and CO_(2)emissions could be reduced by 61%,54%,55%,45%,32%and 38%,respectively.Utilizing lower-emission aircraft and switching travel modes could substantially reduce civil aviation emissions in China.展开更多
Biliary tract cancer(BTC)is a group of heterogeneous sporadic diseases,including intrahepatic,hilar,and distal cholangiocarcinoma,as well as gallbladder cancer.BTC is characterized by high invasiveness and extremely p...Biliary tract cancer(BTC)is a group of heterogeneous sporadic diseases,including intrahepatic,hilar,and distal cholangiocarcinoma,as well as gallbladder cancer.BTC is characterized by high invasiveness and extremely poor prognosis,with a global increased incidence due to intrahepatic cholangiocarcinoma(ICC).The 18Ffludeoxyglucose positron emission tomography(PET)computed tomography(18F-FDG PET/CT)combines glucose metabolic information(reflecting the glycolytic activity of tumor cells)with anatomical structure to assess tumor metabolic heterogeneity,systemic metastasis,and molecular characteristics noninvasively,overcoming the limitations of traditional imaging in the detection of micrometastases and recurrent lesions.18F-FDG PET/CT offers critical insights in clinical staging,therapeutic evaluation,and prognostic prediction of BTC.This article reviews research progress in this field over the past decade,with a particular focus on the advances made in the last 3 years,which have not been adequately summarized and recognized.The research paradigm in this field is shifting from qualitative to quantitative studies,and there have been significant breakthroughs in using 18F-FDG PET/CT metabolic information to predict gene expression in ICC.Radiomics and deep learning techniques have been applied to ICC for prognostic prediction and differential diagnosis.Additionally,PET/magnetic resonance imaging is increasingly demonstrating its value in this field.展开更多
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism....Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.展开更多
Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research probl...Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.展开更多
Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Si...Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.展开更多
Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using se...Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using seaweeds as an anti-methanogenic feed additive has become prevailing in recent years.Asparagopsis taxiformis is the preferred species because it contains a relatively higher concentration of bromoform.As a type of halogenated methane analogue,bromoform contained in A.taxiformis can specifically inhibit the activity of coenzyme M methyltransferase,thereby blocking the ruminal methanogenesis.However,bromoform is a potential toxin and ozone-depleting substance.In response,current research focuses on the effects of bromoform-enriched seaweed supplementation on ruminant productivity and safety,as well as the impact of large-scale cultivation of seaweeds on the atmospheric environment.The current research on seaweed still needs to be improved,especially in developing more species with low bromoform content,such as Bonnemaisonia hamifera,Dictyota bartayresii,and Cystoseira trinodis.Otherwise,seaweed is rich in bioactive substances and exhibits antibacterial,anti-inflammatory,and other physiological properties,but research on the role of these bioactive compounds in methane emissions is lacking.It is worthy of deeper investigation to identify more potential bioactive compounds.As a new focus of attention,seaweed has attracted the interest of many scientists.Nevertheless,seaweed still faces some challenges as a feed additive to ruminants,such as the residues of heavy metals(iodine and bromine)and bromoform in milk or meat,as well as the establishment of a supply chain for seaweed cultivation,preservation,and processing.We have concluded that the methane-reducing efficacy of seaweed is indisputable.However,its application as a commercial feed additive is still influenced by factors such as safety,costs,policy incentives,and regulations.展开更多
China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for Ch...China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system.展开更多
Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate c...Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate change on the ecosystem and the rise in methane emissions,it is essential to conduct a bibliometrics study to provide an overview and research trends.We used the Bibliometrix package and VOSviewer to decipher bibliometric indices for methane emissions in cattle farms(MECF).Current dataset were collected from the Web of Science(Core Collection)database,and 8,998 publications were analyzed.The most co-occurring keywords scientists preferred were methane(1,528),greenhouse gas(443),methane emissions(440),and cattle(369).Methane was the most frequently used keyword in the published scientific literature.Thematic evolution of research themes and trend results highlighted carbon dioxide,methane,dairy cattle,cattle,and risk factors during 1999–2017.Chinese Academy of Sciences ranked on top with 485 publications,followed by Agriculture&Agri-Food Canada,University of Colorado,National Oceanic and Atmospheric Administration,and Aarhus University.Chinese Academy of Sciences was also the most cited organization,followed by the University of Colorado,Agriculture&Agri-Food Canada,National Oceanic and Atmospheric Administration,and United States Geological Survey.Source analysis showed that the Science of the Total Environment was cited with the highest total link strength.Science of the Total Environment ranked first in source core 1 with 290 citation frequencies,followed by Journal of Dairy Science with 223 citation frequencies.Currently,no bibliometric study has been conducted on MECF,and to fill this knowledge gap,we carried out this study to highlight methane emissions in cattle farms,aiming at a climate change perspective.In this regard,we focused on the research productivity of countries authors,journals and institutions,co-occurrence of keywords,evolution of research trends,and collaborative networking.Based on relevance degree of centrality,methane emissions and greenhouse gases appeared as basic themes,cattle,and dairy cattle appeared as emerging/declining themes,whereas,methane,greenhouse gas and nitrous oxide appeared to fall amongst basic and motor themes.On the other hand,beef cattle,rumen and dairy cow seem to be between motor and niche themes,and risk factors lie in niche themes.The present bibliometric analysis provides research progress on methane emissions in cattle farms.Current findings may provide a framework for understanding research trends and themes in MECF research.展开更多
Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emiss...Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emissions from flooding to drying after organic fertilizer replacing for chemical fertilizer remain unclear.Here,a long-term experiment was conducted with four treatments:chemical fertilization only(control),organic fertilizer substituting 25%of chemical N fertilizer(NM1),50%of chemical N fertilizer(NM2),and NM2combined with crop straw(NMS).GHG emissions were monitored,and soil samples were collected to determine labile SOC fractions and microorganisms.Results revealed the GHG emissions in the NM2 significantly increased by 196.88%from flooding to drying,mainly due to the higher CO_(2) emissions.The GHG emissions per kg of C input in NMS was the lowest with the value of 9.17.From flooding to drying,organic fertilizer application significantly increased the readily oxidizable organic carbon(ROC)contents and C lability;the NM2 and NMS dramatically increased the SOC and non-readily oxidizable organic carbon(NROC).The bacterial communities showed significant differences among different treatments in the flooding,while the significant difference was only found between the NMS and other treatments in the drying.From flooding to drying,changing soil moisture conditions causes C fractions and microbial communities to jointly affect carbon emissions,and the NMS promoted carbon sequestration and mitigated GHG emissions.Our findings highlight the importance of the labile SOC fractions and microorganisms linked to GHG emissions in paddy fields.展开更多
基金supported by the National key research and development program of China(No.2022YFE0135000)the National Natural Science Foundation of China(No.42175123)the Natural Science Foundation of Tianjin(No.23JCJQJC00170).
文摘Ammonia(NH3)has been widely recognized as a key precursor of atmospheric secondary aerosol formation.Vehicle emission is a major source of urban atmospheric NH3.With the tightening of emission standards and the growing trend of vehicle fleet electrification,it is imperative to update the emission factors for NH3 from real-world on-road fleets.In this study,a tunnel measurement was conducted in the urban area of Tianjin,China.The fleet-average NH3 emission factor(EF)was 11.2 mg/(km·veh),significantly lower than those in previous studies,showing the benefit of emission standard updating.Through a multiple linear regression analysis,the EFs of light-duty gasoline vehicles,light-duty diesel vehicles,and heavy-duty diesel vehicles(HDDVs)were estimated to be 5.7±0.6 mg/(km·veh),40.8±5.1 mg/(km·veh),and 160.2±16.6 mg/(km·veh),respectively.Based on the results from this study,we found that HDDVs,which comprise<3%of the total vehicles may contribute approximately 22%of total NH3 emissions in Tianjin.Our results highlight NH3 emissions from HDDVs,a previously potentially overlooked source of NH3 emissions in urban areas.The actual on-road NH3 emissions from HDDVs may exceed current expectations,posing a growing concern for the future.
基金partially supported by the National Natural Science Foundation of China(Nos.11804120,61827822,and 22275072)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030209)+1 种基金Research Projects from Guangzhou(Nos.2023A03J0018 and 2024A04J3712)Fundamental Research Funds for the Central Universities(No.21623412).
文摘Fiber-structured ion sensors have gained traction in health monitoring and medical diagnostics owing to their structural flexibility,enhanced sensitivity,and suitability for integration into wearable devices.This study employed a simple and efficient solutionbased process to fabricate nanofibers containing aggregation-induced emission(AIE)dyes.The resulting AIE nanofibers exhibited stable and intense fluorescence,nanosecond fluorescence lifetime,and low-loss light transport when functioning as active waveguides.Additionally,crossed nanofiber intersections exhibited diffraction-limited emission spots.The AIE nanofibers demonstrate efficient and ionspecific fluorescence quenching in response to Ag^(+).These results support the development of sensing units capable of operating in liquid environments or in direct contact with skin or tissues,facilitating real-time monitoring of ion concentrations for personalized healthcare management.
基金supported by the National Natural Science Foundation of China(No.42225103).
文摘Lakes are carbon dioxide(CO_(2))and methane(CH_(4))emission hotspots,whose associated flux is spatially vari-able.Many studies have investigated the impact of microorganisms and environmental factors on CO_(2) and CH_(4) emissions between different lakes.However,the carbon emissions and their influencing factors of different areas within a single lake remain poorly understood.Accordingly,this study investigates CO_(2) and CH_(4) emission hetero-geneity in a large floodplain lake system and distribution characteristics of associated functional microorganisms.Findings show that mean CO_(2) and CH_(4) flux values in the sub lake area were 62.03±24.21 mg/(m2·day)and 5.97±3.2μg/(m2·day),which were greater by factors of 1.78 and 2.96 compared to the water channel and the main lake area,respectively.The alpha diversity of methanogens in the sub lake area was lower than that in the main lake and water channel areas.The abundance of methanogens in bottom water layer was higher compared with the middle and surface layers.Conversely,the abundance of methane(CH_(4))-oxidizing bacteria in the surface layer was higher than that in the bottom layer.Additionally,the composition of methanogen and CH_(4)-oxidizing bacterial community,chlorophyll a(Chl-a),pH,total phosphorus(TP)and dissolved organic carbon(DOC)con-tent constituted the dominate driving factors affecting lake C emissions.Results from this study can be used to improve our understanding of lake spatial heterogeneous of CO_(2) and CH_(4) emission and the driving mechanisms within floodplain lakes under the coupling effects of functional C microorganisms and environmental factors.
基金supported by the National Natural Science Foundation of China(Nos.42305147 and 42405138)the Natural Science Foundation of Jiangsu Province(No.BK20230428).
文摘Atmospheric CO_(2) concentrations are predominantly regulated by multiple emission sources,with industrial emis-sions representing a critical anthropogenic driver that significantly influences temporal and spatial heterogeneity in regional CO_(2) patterns.This study investigated the spatiotemporal distribution of atmospheric CO_(2) in Pucheng and Nanping industrial parks,Nanping City,by conducting field experiments using two coherent differential absorption lidars from 1 August to 31 October 2024.Results showed that the spatial distributions of CO_(2) emis-sions within a 3 km radius were mapped,and the local diffusion processes were clarified.CO_(2) patterns varied differently in two industrial parks over the three-month period:Average CO_(2) concentrations in non-emission areas were 422.4 ppm in Pucheng and 408.7 ppm in Nanping,with the former experiencing higher and more variable carbon emissions;Correlation analysis indicated that synthetic leather factories in Pucheng contributed more to SO_(2) and NO_(x) levels compared to the chemical plant in Nanping;In Pucheng,CO_(2) concentrations were transported from the north at ground-level wind speeds exceeding 4 m/s,while in Nanping,the concentrations dispersed gradually with increasing wind speeds;Forward trajectory simulations revealed that the peak-emission from Pucheng primarily affected southern Fujian,northeastern Jiangxi,and southern Anhui,while the peak-emission from Nanping influenced central and western Fujian and northeastern Jiangxi.Besides,emissions in both industrial parks were higher on weekdays and lower on weekends,reflecting changes in industrial activi-ties.The study underscores the potential of lidar technology for providing detailed insights into CO_(2) distribution and the interactions between emissions,wind patterns,and carbon transport.
基金supported by the National Key R&D Program of China(Grant No.2023YFA1406200)the National Natural Science Foundation of China(No.12274177 and 12304261)the China Postdoctoral Science Foundation(No.2024M751076)。
文摘Luminescent metal-organic frameworks(MOFs)have garnered significant attention due to their structural tunability and potential applications in solid-state lighting,bioimaging,sensing,anticounterfeiting,and other fields.Nevertheless,due to the tendency of1,4-benzenedicarboxylic acid(BDC)to rotate within the framework,MOFs composed of it exhibit significant non-radiative energy dissipation and thus impair the emissive properties.In this study,efficient luminescence of MIL-140A nanocrystals(NCs)with BDC rotors as ligands is achieved by pressure treatment strategy.Pressure treatment effectively modulates the pore structure of the framework,enhancing the interactions between the N,N-dimethylformamide vip molecules and the BDC ligands.The enhanced host-vip interaction contributes to the structural rigidity of the MOF,thereby suppressing the rotation-induced excited-state energy loss.As a result,the pressure-treated MIL-140A NCs displayed bright blue-light emission,with the photoluminescence quantum yield increasing from an initial 6.8%to 69.2%.This study developed an effective strategy to improve the luminescence performance of rotor ligand MOFs,offers a new avenue for the rational design and synthesis of MOFs with superior luminescent properties.
基金supported by the National Natural Science Foundation of China (Grant Nos.12494604,12393834,12393831,62274014,6223501662335015)the National Key R&D Program of China (Grant No.2024YFA1208900)。
文摘The development of quantum materials for single-photon emission is crucial for the advancement of quantum information technology.Although significant advancements have been witnessed in recent years for single-photon sources in the near-infrared band(λ∼700–1000 nm),several challenges have yet to be addressed for ideal single-photon emission at the telecommunication band.In this study,we present a droplet-epitaxy strategy for O-band to C-band single-photon source-based semiconductor quantum dots(QDs)using metal-organic vaporphase epitaxy(MOVPE).By investigating the growth conditions of the epitaxial process,we have successfully synthesized InAs/InP QDs with narrow emission lines spanning a broad spectral range of λ∼1200–1600 nm.The morphological and optical properties of the samples were characterized using atomic force microscopy and microphotoluminescence spectroscopy.The recorded single-photon purity of a plain QD structure reaches g^((2))(0)=0.16,with a radiative recombination lifetime as short as 1.5 ns.This work provides a crucial platform for future research on integrated microcavity enhancement techniques and coupled QDs with other quantum photonics in the telecom bands,offering significant prospects for quantum network applications.
基金Supported by the National Natural Science Foundation of China (50775114)the Natural Scienc Foundation of Jiangsu Province (BK2007198)~~
文摘Acoustic emission (AE) sensors are used to monitor tool conditions in micro-milling operations. Together with the microphone, the AE sensor can detect the tool breakage more accurately and more effectively by applying the wavelet analysis. The processed tool breakage technique by AE sensor is used to perform the wavelet analysis on the experimental data. Results indicate the feasibility of using the AE signals for monitoring the tool condition in micro-milling.
文摘Tool condition is one of the main concerns in friction stir welding (FSW), because the geometrical condition of the tool pin including size and shape is strongly connected to the microstrueture and mechanical performance of the weld. Tool wear occurs during FSW, especially for welding metal matrix composites with large amounts of abrasive particles, and high melting point materials, which significantly expedite tool wear and deteriorate the mechanical performance of welds. Tools with different pin-wear levels are used to weld 6061 Al alloy, while acoustic emission (AE) sensing, metallographic sectioning, and tensile testing are employed to evaluate the weld quality in various tool wear conditions. Structural characterization shows that the tool wear interferes with the weld quality and accounts for the formation of voids in the nugget zone. Tensile test analysis of samples verifies that both the ultimate tensile strength and the yield strength are adversely affected by the formation of voids in the nugget due to the tool wear. The failure location during tensile test clearly depends on the state of the tool wear, which led to the analysis of the relationships between the structure of the nugget and tool wear. AE signatures recorded during welding reveal that the AE hits concentrate on the higher amplitudes with increasing tool wear. The results show that the AE sensing provides a potentially effective method for the on-line manitoring of tool wear.
文摘The impact of environmental regulation on technology innovation is a hot spot in current research where a large number of empirical studies are based on Porter Hypothesis(PH). However, there are still controversies in academia about the establishment of "weak" and "narrow" versions of PH. Based on the panel data of application for patent of energy conservation and emission reduction(ECER) technology of Chinese city scale during 2008-2014, comprehensive energy price, pollutant emission, etc., mixed regression model and systematic generalized method of moments method were adopted, respectively,to study the impact of market-oriented and command-and-control policy tool on China's ECER technology innovation. The results show that the environmental regulation hindered the technological innovation in the immediate phase; however, it turned out to be positive in the first-lag phase. Hence, the establishment of "weak" PH is time-bounded. The command-and-control policy tool played a more positive role in promoting technological innovation in the first-lag phase than market-oriented policy tool. Therefore, "narrow" PH is not tenable. The reason is that the main participants of China's ECER technology innovation are state-owned companies and public institutions. Regionally speaking, the impact which command-and-control policy tool has on technological innovation at sight was nonsignificant in the eastern, the central, and the western regions of China whilst market-oriented policy tool had a negative effect. And market-oriented policy tool in the central region had strongest negative effect, which would diminish in the eastern region and become weakest in the western region. This was related to regional energy consumption level and the market economic vitality.
基金supported by the "study of Green space management system and protection" of mechanism Economic Development Research Center of State Forestry Administration (ZDWT-2014-3)
文摘China has achieved economic growth while great carbon emissions reduction in recent years. Amid China's effort to reduce emissions, the Five-Year Plans have guided and motivated local and foreign forces from the government, industries, and society to work together. This paper showed that a mediumehigh economic growth gate, industry structure adjustment, and energy structure adjustment, which are guaranteed under the Five-Year Plan, all contribute to energy saving in China. The economy entered a stable growing phase during the 12 th Five-Year Plan, while the economic growth rate declined to 7.8% from 11.2% in the 11 th Five-Year Plan. Simultaneously, the CO2 emissions growth rate declined from8.32%(2009-2012 mean) to 1.82%(2012-2014 mean). Industrial structure adjustment canceled out nearly one-third of the CO2 emissions caused by economic growth. Under the 13 th Five-Year Plan, China will continue its energy saving efforts on the green development path, with greener quotas, a stricter implementation process, and more key projects.
基金supported by the National Natural Science Foundation of China (NSFC)Projects (Nos.42205105,42121004,and 42077190)the Science and Technology Project of Shaoguan (No.210811164532141)+3 种基金the National Key R&D Program of China (2022YFC3700604)the Science and Technology Program of Guangzhou City (No.202201010400)the Fundamental Research Funds for the Central Universities (No.21622319)the Research Center of Low Carbon Economy for Guangzhou Region (No.22JNZS50).
文摘Emission characteristics of biogenic volatile organic compounds(BVOCs)from dominant tree species in the subtropical pristine forests of China are extremely limited.Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients(600-1690ma.s.l.)in the Nanling Mountains of southern China.Composition characteristics as well as seasonal and altitudinal variations were analyzed.Standardized emission rates and canopyscale emission factors were then calculated.Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season.Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees,accounting for over 70%of the total.Schima superba,Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials.The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols fromNature(MEGAN),while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model.Our results can be used to update the current BVOCs emission inventory in MEGAN,thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.
基金supported by the National Natural Science Foundation of China(Nos.42375171 and 42105157)the Interdisciplinary Research Project for Young Teachers of USTB(No.06600083)+1 种基金Energy Foundation(Nos.G-2109-33379 and G-2306-34754)the Fundamental Research Funds for the Central Universities(No.06500166).
文摘Civil aviation is one of the industries facing the greatest challenge in reaching carbon neutrality by the middle of this century,and this sector also contributes to adverse impacts on the regional air quality and human health.China exhibits the second highest air passenger turnover worldwide.Our understanding of civil aviation emissionsmust be urgently enhanced,and themitigation potential should be explored.In this study,on the basis of real domestic flight information for 2019,we built a greenhouse gas and air pollution emission inventory for the civil aviation sector in China with the fuel flowmethod based on the cruise and other phases.We thoroughly analyzed emissions by region,aircraft and engine types,and aircraft age,based on which we designed four measures to evaluate the abatement potential.We found that the hydrocarbon(HC),CO,NO_(x),SO_(2),particulate matter(PM)and CO_(2)emissions in 2019 reached 79.9 kt(95%CI[51.6–114.5]),176.3 kt(95%CI[114.5–248.2]),304.2 kt(95%CI[203.4–420.7]),23.2 kt(95%CI[14.2–33.7]),1.0 kt(95%CI[0.61–1.44])and 87.0 Mt(95%CI[57.4–119.6]),respectively.The cruise phase was the major emission phase,accounting for 67%-87%of the total pollutant emissions.If four measures were jointly implemented,the HC,CO,NO_(x),SO_(2),PM and CO_(2)emissions could be reduced by 61%,54%,55%,45%,32%and 38%,respectively.Utilizing lower-emission aircraft and switching travel modes could substantially reduce civil aviation emissions in China.
文摘Biliary tract cancer(BTC)is a group of heterogeneous sporadic diseases,including intrahepatic,hilar,and distal cholangiocarcinoma,as well as gallbladder cancer.BTC is characterized by high invasiveness and extremely poor prognosis,with a global increased incidence due to intrahepatic cholangiocarcinoma(ICC).The 18Ffludeoxyglucose positron emission tomography(PET)computed tomography(18F-FDG PET/CT)combines glucose metabolic information(reflecting the glycolytic activity of tumor cells)with anatomical structure to assess tumor metabolic heterogeneity,systemic metastasis,and molecular characteristics noninvasively,overcoming the limitations of traditional imaging in the detection of micrometastases and recurrent lesions.18F-FDG PET/CT offers critical insights in clinical staging,therapeutic evaluation,and prognostic prediction of BTC.This article reviews research progress in this field over the past decade,with a particular focus on the advances made in the last 3 years,which have not been adequately summarized and recognized.The research paradigm in this field is shifting from qualitative to quantitative studies,and there have been significant breakthroughs in using 18F-FDG PET/CT metabolic information to predict gene expression in ICC.Radiomics and deep learning techniques have been applied to ICC for prognostic prediction and differential diagnosis.Additionally,PET/magnetic resonance imaging is increasingly demonstrating its value in this field.
基金supported by the Research Project of the Shanghai Health Commission,No.2020YJZX0111(to CZ)the National Natural Science Foundation of China,Nos.82021002(to CZ),82272039(to CZ),82171252(to FL)+1 种基金a grant from the National Health Commission of People’s Republic of China(PRC),No.Pro20211231084249000238(to JW)Medical Innovation Research Project of Shanghai Science and Technology Commission,No.21Y11903300(to JG).
文摘Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders.
基金supported by the Key Research and Development Program in Shaanxi Province,China(No.2022ZDLSF07-05)the Fundamental Research Funds for the Central Universities,CHD(No.300102352901)。
文摘Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.
基金supported by the Humanities and Social Sciences Project of the Ministry of Education of the Peoples Republic(No.21YJCZH099)the National Natural Science Foundation of China(Nos.41401089 and 41741014)the Science and Technology Project of Sichuan Province(No.2023NSFSC1979).
文摘Majority of carbon emissions originate from fossil energy consumption,thus necessitating calculation and monitoring of carbon emissions from energy consumption.In this study,we utilized energy consumption data from Sichuan Province and Chongqing Municipality for the years 2000 to 2019 to estimate their statistical carbon emissions.We then employed nighttime light data to downscale and infer the spatial distribution of carbon emissions at the county level within the Chengdu-Chongqing urban agglomeration.Furthermore,we analyzed the spatial pattern of carbon emissions at the county level using the coefficient of variation and spatial autocorrelation,and we used the Geographically and Temporally Weighted Regression(GTWR)model to analyze the influencing factors of carbon emissions at this scale.The results of this study are as follows:(1)from 2000 to 2019,the overall carbon emissions in the Chengdu-Chongqing urban agglomeration showed an increasing trend followed by a decrease,with an average annual growth rate of 4.24%.However,in recent years,it has stabilized,and 2012 was the peak year for carbon emissions in the Chengdu-Chongqing urban agglomeration;(2)carbon emissions exhibited significant spatial clustering,with high-high clustering observed in the core urban areas of Chengdu and Chongqing and low-low clustering in the southern counties of the Chengdu-Chongqing urban agglomeration;(3)factors such as GDP,population(Pop),urbanization rate(Ur),and industrialization structure(Ic)all showed a significant influence on carbon emissions;(4)the spatial heterogeneity of each influencing factor was evident.
基金supported by the Youth Innovation Program of the Chinese Academy of Agricultural Sciences(Y2022QC10)the Agricultural Science and Technology Innovation Program,China(CAAS-ASTIP-2023-IFR-03,CAAS-IFR-ZDRW202302 and CAAS-IFR-ZDRW202404)the Basal Research Fund of the Institute of Feed Research of Chinese Academy of Agricultural Sciences(1610382024009)。
文摘Cutting farming-related methane emissions from ruminants is critical in the battle against climate change.Since scientists initially investigated the potential of marine macroalgae to reduce methane emissions,using seaweeds as an anti-methanogenic feed additive has become prevailing in recent years.Asparagopsis taxiformis is the preferred species because it contains a relatively higher concentration of bromoform.As a type of halogenated methane analogue,bromoform contained in A.taxiformis can specifically inhibit the activity of coenzyme M methyltransferase,thereby blocking the ruminal methanogenesis.However,bromoform is a potential toxin and ozone-depleting substance.In response,current research focuses on the effects of bromoform-enriched seaweed supplementation on ruminant productivity and safety,as well as the impact of large-scale cultivation of seaweeds on the atmospheric environment.The current research on seaweed still needs to be improved,especially in developing more species with low bromoform content,such as Bonnemaisonia hamifera,Dictyota bartayresii,and Cystoseira trinodis.Otherwise,seaweed is rich in bioactive substances and exhibits antibacterial,anti-inflammatory,and other physiological properties,but research on the role of these bioactive compounds in methane emissions is lacking.It is worthy of deeper investigation to identify more potential bioactive compounds.As a new focus of attention,seaweed has attracted the interest of many scientists.Nevertheless,seaweed still faces some challenges as a feed additive to ruminants,such as the residues of heavy metals(iodine and bromine)and bromoform in milk or meat,as well as the establishment of a supply chain for seaweed cultivation,preservation,and processing.We have concluded that the methane-reducing efficacy of seaweed is indisputable.However,its application as a commercial feed additive is still influenced by factors such as safety,costs,policy incentives,and regulations.
基金supported by Ningbo’s major scientific and technological breakthrough project“Research and Demonstration on the Technology of Collaborative Disposal of Secondary Ash in Typical Industrial Furnaces” (No.20212ZDYF020047)the central balance fund project“Research on Carbon Emission Accounting and Emission Reduction Potential Assessment for the Whole Life Cycle of Iron and Steel Industry” (No.2021-JY-07).
文摘China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system.
基金supported by the Special Fund for Science and Technology Innovation Strategy of Guangdong Province,China(2022660500250009604)。
文摘Methane contributes to global warming,and livestock is one of the sources of methane production.However,methane emission studies using bibliometric tools in livestock are lacking.Given the negative impact of climate change on the ecosystem and the rise in methane emissions,it is essential to conduct a bibliometrics study to provide an overview and research trends.We used the Bibliometrix package and VOSviewer to decipher bibliometric indices for methane emissions in cattle farms(MECF).Current dataset were collected from the Web of Science(Core Collection)database,and 8,998 publications were analyzed.The most co-occurring keywords scientists preferred were methane(1,528),greenhouse gas(443),methane emissions(440),and cattle(369).Methane was the most frequently used keyword in the published scientific literature.Thematic evolution of research themes and trend results highlighted carbon dioxide,methane,dairy cattle,cattle,and risk factors during 1999–2017.Chinese Academy of Sciences ranked on top with 485 publications,followed by Agriculture&Agri-Food Canada,University of Colorado,National Oceanic and Atmospheric Administration,and Aarhus University.Chinese Academy of Sciences was also the most cited organization,followed by the University of Colorado,Agriculture&Agri-Food Canada,National Oceanic and Atmospheric Administration,and United States Geological Survey.Source analysis showed that the Science of the Total Environment was cited with the highest total link strength.Science of the Total Environment ranked first in source core 1 with 290 citation frequencies,followed by Journal of Dairy Science with 223 citation frequencies.Currently,no bibliometric study has been conducted on MECF,and to fill this knowledge gap,we carried out this study to highlight methane emissions in cattle farms,aiming at a climate change perspective.In this regard,we focused on the research productivity of countries authors,journals and institutions,co-occurrence of keywords,evolution of research trends,and collaborative networking.Based on relevance degree of centrality,methane emissions and greenhouse gases appeared as basic themes,cattle,and dairy cattle appeared as emerging/declining themes,whereas,methane,greenhouse gas and nitrous oxide appeared to fall amongst basic and motor themes.On the other hand,beef cattle,rumen and dairy cow seem to be between motor and niche themes,and risk factors lie in niche themes.The present bibliometric analysis provides research progress on methane emissions in cattle farms.Current findings may provide a framework for understanding research trends and themes in MECF research.
基金the support of the National Natural Science Foundation of China(No.42107247)the National Key Research and Development Project(No.2022YFD1901605)+1 种基金the Natural Science Foundation of Sichuan Province(Nos.2025YFHZ0142 and 2024NSFSC0800)the Tobacco Science Foundation of Sichuan Province(No.SCYC202407)。
文摘Soil microorganisms and labile soil organic carbon(SOC)fractions are essential factors affecting greenhouse gas(GHG)emissions in paddy fields.However,the effects of labile SOC fractions and microorganisms on GHG emissions from flooding to drying after organic fertilizer replacing for chemical fertilizer remain unclear.Here,a long-term experiment was conducted with four treatments:chemical fertilization only(control),organic fertilizer substituting 25%of chemical N fertilizer(NM1),50%of chemical N fertilizer(NM2),and NM2combined with crop straw(NMS).GHG emissions were monitored,and soil samples were collected to determine labile SOC fractions and microorganisms.Results revealed the GHG emissions in the NM2 significantly increased by 196.88%from flooding to drying,mainly due to the higher CO_(2) emissions.The GHG emissions per kg of C input in NMS was the lowest with the value of 9.17.From flooding to drying,organic fertilizer application significantly increased the readily oxidizable organic carbon(ROC)contents and C lability;the NM2 and NMS dramatically increased the SOC and non-readily oxidizable organic carbon(NROC).The bacterial communities showed significant differences among different treatments in the flooding,while the significant difference was only found between the NMS and other treatments in the drying.From flooding to drying,changing soil moisture conditions causes C fractions and microbial communities to jointly affect carbon emissions,and the NMS promoted carbon sequestration and mitigated GHG emissions.Our findings highlight the importance of the labile SOC fractions and microorganisms linked to GHG emissions in paddy fields.