期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
An Efficient Multi-objective Approach Based on Golden Jackal Search for Dynamic Economic Emission Dispatch
1
作者 Keyu Zhong Fen Xiao Xieping Gao 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第3期1541-1566,共26页
Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods... Dynamic Economic Emission Dispatch(DEED)aims to optimize control over fuel cost and pollution emission,two conflicting objectives,by scheduling the output power of various units at specific times.Although many methods well-performed on the DEED problem,most of them fail to achieve expected results in practice due to a lack of effective trade-off mechanisms between the convergence and diversity of non-dominated optimal dispatching solutions.To address this issue,a new multi-objective solver called Multi-Objective Golden Jackal Optimization(MOGJO)algorithm is proposed to cope with the DEED problem.The proposed algorithm first stores non-dominated optimal solutions found so far into an archive.Then,it chooses the best dispatching solution from the archive as the leader through a selection mechanism designed based on elite selection strategy and Euclidean distance index method.This mechanism can guide the algorithm to search for better dispatching solutions in the direction of reducing fuel costs and pollutant emissions.Moreover,the basic golden jackal optimization algorithm has the drawback of insufficient search,which hinders its ability to effectively discover more Pareto solutions.To this end,a non-linear control parameter based on the cosine function is introduced to enhance global exploration of the dispatching space,thus improving the efficiency of finding the optimal dispatching solutions.The proposed MOGJO is evaluated on the latest CEC benchmark test functions,and its superiority over the state-of-the-art multi-objective optimizers is highlighted by performance indicators.Also,empirical results on 5-unit,10-unit,IEEE 30-bus,and 30-unit systems show that the MOGJO can provide competitive compromise scheduling solutions compared to published DEED methods.Finally,in the analysis of the Pareto dominance relationship and the Euclidean distance index,the optimal dispatching solutions provided by MOGJO are the closest to the ideal solutions for minimizing fuel costs and pollution emissions simultaneously,compared to the latest published DEED solutions. 展开更多
关键词 Dynamic economic emission dispatch Multi-objective optimization Golden jackal Euclidean distance index
在线阅读 下载PDF
Boosting Kernel Search Optimizer with Slime Mould Foraging Behavior for Combined Economic Emission Dispatch Problems 被引量:2
2
作者 Ruyi Dong Lixun Sun +3 位作者 Long Ma Ali Asghar Heidari Xinsen Zhou Huiling Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第6期2863-2895,共33页
Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the... Reducing pollutant emissions from electricity production in the power system positively impacts the control of greenhouse gas emissions.Boosting kernel search optimizer(BKSO)is introduced in this research to solve the combined economic emission dispatch(CEED)problem.Inspired by the foraging behavior in the slime mould algorithm(SMA),the kernel matrix of the kernel search optimizer(KSO)is intensified.The proposed BKSO is superior to the standard KSO in terms of exploitation ability,robustness,and convergence rate.The CEC2013 test function is used to assess the improved KSO's performance and compared to 11 well-known optimization algorithms.BKSO performs better in statistical results and convergence curves.At the same time,BKSO achieves better fuel costs and fewer pollution emissions by testing with four real CEED cases,and the Pareto solution obtained is also better than other MAs.Based on the experimental results,BKSO has better performance than other comparable MAs and can provide more economical,robust,and cleaner solutions to CEED problems. 展开更多
关键词 Combined economic emission dispatch Kernel search optimization Slime mould algorithm Valve point effect Greenhouse gases
在线阅读 下载PDF
Modeling of Combined Economic and Emission Dispatch Using Improved Sand Cat Optimization Algorithm
3
作者 Fadwa Alrowais Jaber S.Alzahrani +2 位作者 Radwa Marzouk Abdullah Mohamed Gouse Pasha Mohammed 《Computers, Materials & Continua》 SCIE EI 2023年第6期6145-6160,共16页
Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid... Combined Economic and Emission Dispatch(CEED)task forms multi-objective optimization problems to be resolved to minimize emission and fuel costs.The disadvantage of the conventional method is its incapability to avoid falling in local optimal,particularly when handling nonlinear and complex systems.Metaheuristics have recently received considerable attention due to their enhanced capacity to prevent local optimal solutions in addressing all the optimization problems as a black box.Therefore,this paper focuses on the design of an improved sand cat optimization algorithm based CEED(ISCOA-CEED)technique.The ISCOA-CEED technique majorly concen-trates on reducing fuel costs and the emission of generation units.Moreover,the presented ISCOA-CEED technique transforms the equality constraints of the CEED issue into inequality constraints.Besides,the improved sand cat optimization algorithm(ISCOA)is derived from the integration of tra-ditional SCOA with the Levy Flight(LF)concept.At last,the ISCOA-CEED technique is applied to solve a series of 6 and 11 generators in the CEED issue.The experimental validation of the ISCOA-CEED technique ensured the enhanced performance of the presented ISCOA-CEED technique over other recent approaches. 展开更多
关键词 Economic and emission dispatch multi-objective optimization metaheuristics fuel cost minimization sand cat optimization
在线阅读 下载PDF
Applying Convex Optimal Power Flow to Combined Economic and Emission Dispatch
4
作者 Zhao Yuan Mohammad Reza Hesamzadeh 《Journal of Geoscience and Environment Protection》 2016年第7期9-14,共6页
This paper addresses the problem of reducing CO<sub>2</sub> emissions by applying convex optimal power flow model to the combined economic and emission dispatch problem. The large amount of CO<sub>2&... This paper addresses the problem of reducing CO<sub>2</sub> emissions by applying convex optimal power flow model to the combined economic and emission dispatch problem. The large amount of CO<sub>2</sub> emissions in the power industry is a major source of global warming effect. An efficient and economic approach to reduce CO<sub>2</sub> emissions is to formulate the emission reduction problem as emission dispatch problem and combined with power system economic dispatch (ED). Because the traditional optimal power flow (OPF) model used by the economic dispatch is nonlinear and nonconvex, current nonlinear solvers are not able to find the global optimal solutions. In this paper, we use the convex optimal power flow model to formulate the combined economic and emission dispatch problem. The advantage of using convex power flow model is that global optimal solutions can be obtained by using mature industrial strength nonlinear solvers such as MOSEK. Numerical results of various IEEE power network test cases confirm the feasibility and advantage of convex combined economic and emission dispatch (CCEED). 展开更多
关键词 CO2 Combined Econnomic and emission Dispatch Convex Optimal Power Flow
在线阅读 下载PDF
Optimal capacity planning with economic emission considerations in isolated solar-wind-diesel microgrid using combined arithmetic-golden jackal optimization
5
作者 Sujoy Barua Adel Merabet +2 位作者 Ahmed Al-Durra Tarek El Fouly Ehab F.El-Saadany 《Energy and AI》 2025年第1期164-179,共16页
This study aims to optimize an isolated solar-wind-diesel microgrid to reduce reliance on diesel generators,lower operational costs,and mitigate environmental pollution in remote areas.In this optimization,arithmetic ... This study aims to optimize an isolated solar-wind-diesel microgrid to reduce reliance on diesel generators,lower operational costs,and mitigate environmental pollution in remote areas.In this optimization,arithmetic opti-mization algorithm and golden jackal optimization are combined for achieving optimal capacity planning,considering economic and emission dispatch factors.This combination enhances the optimization by considering the balance in exploration and exploitation offered by the arithmetic operators of the arithmetic optimization algorithm and the dynamic adjustment by the adaptive search of the golden jackal optimization.Performance analysis is conducted by simulating and comparing three scenarios of only diesel generators,solar-wind-diesel and solar-wind with low number of diesel generators.The results demonstrate significant cost savings using the solar-wind-diesel microgrid under the proposed combined optimization compared to the arithmetic opti-mization algorithm and golden jackal algorithm and conventional metaheuristic optimization based on genetic algorithms. 展开更多
关键词 Economic emission dispatch Capacity planning Operational cost Golden jackal ARITHMETIC OPTIMIZATION
在线阅读 下载PDF
Data-driven Surrogate-assisted Method for High-dimensional Multi-area Combined Economic/Emission Dispatch 被引量:1
6
作者 Chenhao Lin Huijun Liang +2 位作者 Aokang Pang Jianwei Zhong Yongchao Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第1期52-64,共13页
Multi-area combined economic/emission dispatch(MACEED)problems are generally studied using analytical functions.However,as the scale of power systems increases,ex isting solutions become time-consuming and may not mee... Multi-area combined economic/emission dispatch(MACEED)problems are generally studied using analytical functions.However,as the scale of power systems increases,ex isting solutions become time-consuming and may not meet oper ational constraints.To overcome excessive computational ex pense in high-dimensional MACEED problems,a novel data-driven surrogate-assisted method is proposed.First,a cosine-similarity-based deep belief network combined with a back-propagation(DBN+BP)neural network is utilized to replace cost and emission functions.Second,transfer learning is applied with a pretraining and fine-tuning method to improve DBN+BP regression surrogate models,thus realizing fast con struction of surrogate models between different regional power systems.Third,a multi-objective antlion optimizer with a novel general single-dimension retention bi-objective optimization poli cy is proposed to execute MACEED optimization to obtain scheduling decisions.The proposed method not only ensures the convergence,uniformity,and extensibility of the Pareto front,but also greatly reduces the computational time.Finally,a 4-ar ea 40-unit test system with different constraints is employed to demonstrate the effectiveness of the proposed method. 展开更多
关键词 Multi-area combined economic/emission dispatch high-dimensional power system deep belief network data driven transfer learning
原文传递
Sequential quadratic programming particle swarm optimization for wind power system operations considering emissions 被引量:5
7
作者 Yang ZHANG Fang YAO +2 位作者 Herbert Ho-Ching IU Tyrone FERNANDO Kit Po WONG 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2013年第3期231-240,共10页
In this paper,a computation framework for addressing combined economic and emission dispatch(CEED)problem with valve-point effects as well as stochastic wind power considering unit commitment(UC)using a hybrid approac... In this paper,a computation framework for addressing combined economic and emission dispatch(CEED)problem with valve-point effects as well as stochastic wind power considering unit commitment(UC)using a hybrid approach connecting sequential quadratic programming(SQP)and particle swarm optimization(PSO)is proposed.The CEED problem aims to minimize the scheduling cost and greenhouse gases(GHGs)emission cost.Here the GHGs include carbon dioxide(CO_(2)),nitrogen dioxide(NO_(2)),and sulphur oxides(SO_(x)).A dispatch model including both thermal generators and wind farms is developed.The probability of stochastic wind power based on the Weibull distribution is included in the CEED model.The model is tested on a standard system involving six thermal units and two wind farms.A set of numerical case studies are reported.The performance of the hybrid computational method is validated by comparing with other solvers on the test system. 展开更多
关键词 Combined economic and emission dispatch Unit commitment Particle swarm optimization Sequential quadratic programming Weibull distribution Wind power
原文传递
Recurrent Neural Network for Nonconvex Economic Emission Dispatch
8
作者 Jiayu Wang Xing He +1 位作者 Junjian Huang Guo Chen 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第1期46-55,共10页
In this paper, an economic emission dispatch(EED) model is developed to reduce fuel cost and environmental pollution emissions. Considering the development of new energy sources in recent years, the EED problem involv... In this paper, an economic emission dispatch(EED) model is developed to reduce fuel cost and environmental pollution emissions. Considering the development of new energy sources in recent years, the EED problem involves thermal units with the valve point effect and WTs. Meanwhile, it complies with demand constraint and generator capacity constraints. A recurrent neural network(RNN) is proposed to search for local optimal solution of the introduced nonconvex EED problem. The optimality and convergence of the proposed dynamic model are given. The RNN algorithm is verified on a power generation system for the optimization of scheduling and minimization of total cost. Moreover, a particle swarm optimization(PSO) algorithm is compared with RNN under the same problematic frame. Numerical simulation results demonstrate that the optimal scheduling given by RNN is more precise and has lower total cost than PSO. In addition, the dynamic variation of power load demand is considered and the power distribution of eight generators during 12 time periods is depicted. 展开更多
关键词 Recurrent neural network(RNN) nonconvex economic emission dispatch optimization problem
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部