期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Survey of Embodied Learning for Object-centric Robotic Manipulation
1
作者 Ying Zheng Lei Yao +5 位作者 Yuejiao Su Yi Zhang Yi Wang Sicheng Zhao Yiyi Zhang Lap-Pui Chau 《Machine Intelligence Research》 2025年第4期588-626,共39页
Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied AI.It is crucial for advancing next-generation intelligent robots and has garnered significant interes... Embodied learning for object-centric robotic manipulation is a rapidly developing and challenging area in embodied AI.It is crucial for advancing next-generation intelligent robots and has garnered significant interest recently.Unlike data-driven machine learning methods,embodied learning focuses on robot learning through physical interaction with the environment and perceptual feedback,making it especially suitable for robotic manipulation.In this paper,we provide a comprehensive survey of the latest advancements in this field and categorize the existing work into three main branches:1)Embodied perceptual learning,which aims to predict object pose and affordance through various data representations;2)Embodied policy learning,which focuses on generating optimal robotic decisions using methods such as reinforcement learning and imitation learning;3)Embodied task-oriented learning,designed to optimize the robot′s performance based on the characteristics of different tasks in object grasping and manipulation.In addition,we offer an overview and discussion of public datasets,evaluation metrics,representative applications,current challenges,and potential future research directions.A project associated with this survey has been established at https://github.com/RayYoh/OCRM_survey. 展开更多
关键词 embodied learning robotic manipulation pose estimation affordance learning policy learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部