A semi-empirical interatomic potential formalism,the second-nearest-neighbor modified embedded-atom method(2NN MEAM),has been applied to obtaining interatomic potentials for the Co-W and Al-W binary system using previ...A semi-empirical interatomic potential formalism,the second-nearest-neighbor modified embedded-atom method(2NN MEAM),has been applied to obtaining interatomic potentials for the Co-W and Al-W binary system using previously developed MEAM potentials of Co,Al and W.The potential parameters were determined by fitting the experimental data on the enthalpy of formation,lattice parameter,melting point and elastic constants.The present potentials generally reproduce the fundamental physical properties of the Co-W and Al-W systems accurately.The lattice parameters,the enthalpy of formation,the thermal stability and the elastic constants match well with experiment and the first-principles results.The enthalpy of mixing and the enthalpy of formation and mixing of liquid are in good agreement with CALPHAD calculations.The potentials can be easily combined with already-developed MEAM potentials for binary cobalt systems and can be used to describe Co-Al-W-based multicomponent alloys,especially for interfacial properties.展开更多
A simple analytic embedded-atom model of monoatoms that includes more than nearest neighbours has been extended to study properties of binary liquid Cu-Ni alloys, here the two-body potential between different species ...A simple analytic embedded-atom model of monoatoms that includes more than nearest neighbours has been extended to study properties of binary liquid Cu-Ni alloys, here the two-body potential between different species of atoms is taken as a function of the two-body potential for the pure metals with a unique form which yields alloy models with the same invariance to electron density transformations as monoatomic models. Faber-Ziman structure factors have been computed by molecular dynamics simulation on the base of this model. The results are in good agreement with experimental data given by Waseda, thus supporting the overall validity of the approach, especially for cross potential of Cu-Ni pair. Further, a detailed description of structure of binary liquid Cu-Ni alloys with different compositions have been performed using pair analysis and bond orientational order method etc., and then the chemical short range order has also been examined to reveal the structural characterization.展开更多
The structural properties, the enthalpies of formation, and the mechanical properties of some Ni-Al intermetallic compounds (NiAl, Ni3Al, NiAl3, Ni5Al3, Ni3Al4) are studied by using Chen's lattice inversion embedde...The structural properties, the enthalpies of formation, and the mechanical properties of some Ni-Al intermetallic compounds (NiAl, Ni3Al, NiAl3, Ni5Al3, Ni3Al4) are studied by using Chen's lattice inversion embedded-atom method (CLI-EAM). Our calculated lattice parameters and cohesive energies of Ni-A1 compounds are consistent with the experimental and the other EAM results. The results of enthalpy of formation indicate a strong chemical interaction between Ni and Al in the intermetallic compounds. Through analyzing the alloy elastic constants, we find that all the Ni-Al intermetallic compounds discussed are mechanically stable. The bulk moduli of the compounds increase with the increasing Ni concentration. Our results also suggest that NiAl, Ni3Al, NiAl3, and Ni5Al3 are ductile materials with lower ratios of shear modulus to bulk modulus; while Ni3Al4 is brittle with a higher ratio.展开更多
An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1...An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1) random solid solutions are calculated as a function of the concentrations of Co and A1. The calculated SFEs decrease with increasing concentrations of Co and A1, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co.展开更多
The lattice-inversion embedded-atom-method interatomic potential developed previously by us is extended to alkaline metals including Li,Na,and K.It is found that considering interatomic interactions between neighborin...The lattice-inversion embedded-atom-method interatomic potential developed previously by us is extended to alkaline metals including Li,Na,and K.It is found that considering interatomic interactions between neighboring atoms of an appropriate distance is a matter of great significance in constructing accurate embedded-atom-method interatomic potentials,especially for the prediction of surface energy.The lattice-inversion embedded-atom-method interatomic potentials for Li,Na,and K are successfully constructed by taking the fourth-neighbor atoms into consideration.These angular-independent potentials markedly promote the accuracy of predicted surface energies,which agree well with experimental results.In addition,the predicted structural stability,elastic constants,formation and migration energies of vacancy,and activation energy of vacancy diffusion are in good agreement with available experimental data and first-principles calculations,and the equilibrium condition is satisfied.展开更多
We investigate connections between nonlocal continuum models and molecular dynamics.A continuous upscaling of molecular dynamics models of the form of the embedded-atom model is presented,providing means for simulatin...We investigate connections between nonlocal continuum models and molecular dynamics.A continuous upscaling of molecular dynamics models of the form of the embedded-atom model is presented,providing means for simulating molecular dynamics systems at greatly reduced cost.Results are presented for structured and structureless material models,supported by computational experiments.The nonlocal continuum models are shown to be instances of the state-based peridynamics theory.Connections relating multibody peridynamic models and upscaled nonlocal continuum models are derived.展开更多
Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problem...Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problems,but most of the existing interatomic potentials are limited to the Ti-Al binary system and lack interatomic potentials for doped alloys.Here,an intera-tomic potential of Nb-Al-Ti ternary systems based on the modified embedded-atom method was developed.The ternary potential can accurately predict the structure and thermodynamic properties of the Nb-Al-Ti system.The potential shows that the optimal Nb content for high-temperature strength-ductility synergy of TiAl single crystals is 8%,consistent with the amount of miracle synthesis of TiAl single crystals.Tensile simulations further show that the developed potential can make an effective prediction at high temperatures,indicating the potential for the development and applications of high-temperature Nb-Al-Ti ternary systems.展开更多
The calculation of elastic constants of Ag/Pd superlattice thin films by molecular dynamics simulations with many-body potentials is presented. It reveals that the elastic constants C11 and C55 increase with decreasin...The calculation of elastic constants of Ag/Pd superlattice thin films by molecular dynamics simulations with many-body potentials is presented. It reveals that the elastic constants C11 and C55 increase with decreasing modulation wavelength A of the films, which is consistent with experiments. However, the change of C11 and C55 with A is found to be around the values determined by a rule of mixture using bulk elastic constants of metals. No supermodulus effect is observed and it is due to cancellation between enhanced and reduced contributions to elastic constants from Ag and Pd layers subjected to compressive and tensile strains, respectively.展开更多
The melting behaviour of four typical core-shell structured 309-atom Ag-Rh bimetallic clusters, with decahedral and icosahedral geometric configurations, is investigated by using molecular dynamics simulation, based o...The melting behaviour of four typical core-shell structured 309-atom Ag-Rh bimetallic clusters, with decahedral and icosahedral geometric configurations, is investigated by using molecular dynamics simulation, based on the Sutton-Chen potential. The initial atomic configurations are obtained from semi-grand canonical ensemble Monte Carlo simulations. It is found that the melting point temperature Tm increases with the mole fraction of Rh in the bimetallic clusters, and Tm of Ag-Rh icosahedral clusters is higher than those of Ag-Rh decahedral clusters with the same Rh mole fraction. It is also found that the Ag atoms lie on the surface of Ag-Rh bimetallic clusters even after melting.展开更多
Embedded-atom method (EAM) potentials are used to investigate the effects of alloying (e.g. 3d-metals) on the trends of elastic and thermodynamic properties for CuPd3 alloy. Our calculated lattice parameter, cohes...Embedded-atom method (EAM) potentials are used to investigate the effects of alloying (e.g. 3d-metals) on the trends of elastic and thermodynamic properties for CuPd3 alloy. Our calculated lattice parameter, cohesive energy, and elastic constants of CuPd3 are consistent with the available experimental and theoretical data. The results of elastic constants indicate that all these alloys are mechanically stable. Further mechanical behavior analysis shows that the additions of Cr, Fe, Co, and Ni could improve the hardness of CuPd3 while V could well increase its ductility. Moreover, in order to evaluate the thermodynamic contribution of 3d-metals, the Debye temperature, phonon density of states, and vibrational entropy for CuMPd6 alloy are also investigated.展开更多
With modified analytical embedded-atom method and molecular dynamics simulation, this paper simulates the strain energy and the equilibrium core structure of a(100) edge dislocation in BCC metal iron on atomistic sc...With modified analytical embedded-atom method and molecular dynamics simulation, this paper simulates the strain energy and the equilibrium core structure of a(100) edge dislocation in BCC metal iron on atomistic scale. In addition, the trapping effect of dislocation on vacancy is investigated as well. The results show that the equilibrium dislocation core is quite narrow and has a C2v symmetry structure. Calculated strain energy Es of the dislocation is a linear function of ln(R/2b) while R ≥ 5.16 A(1A = 0.1 nm), in excellent agreement with the elasticity theory prediction. Determined core radius and energy are 5.16 A and 0.62 eV/A, respectively. The closer the vacancy to the dislocation line is, the lower the vacancy formation energy is, this fact implies that the dislocation has a trend to trap the vacancy, especially for a separation distance of the vacancy from dislocation line being less than two lattice constants.展开更多
A consistent empirical embedded-atom potential that includes a long range force was developed for fcc (face-centered cubic) metals and alloys. The proposed potential for pure metals does not require modification of ...A consistent empirical embedded-atom potential that includes a long range force was developed for fcc (face-centered cubic) metals and alloys. The proposed potential for pure metals does not require modification of the initial function form when being applied to alloy systems. The potential parameters of this model were determined by fitting lattice constant, three elastic constants, cohesive energy, and vacancy formation energies of the pure metals and the heats of solution of the binary alloys via an optimization technique. Parameters for Ag, AI, Au, Cu, Ni, Pd and Pt were obtained. The obtained parameters were used to calculate the bulk modulus, divacancy formation energy, crystal stability, stacking fault energy, vacancy migration energy, and melting point for each pure metal and the heats of formation and lattice constants for binary alloys. The predicted values were in good agreement with experimental results.展开更多
The modified analytic embedded-atom method and molecular dynamics simulations are applied to the investigation of the surface premelting and melting behaviours of the V(110) plane by calculating the interlayer relax...The modified analytic embedded-atom method and molecular dynamics simulations are applied to the investigation of the surface premelting and melting behaviours of the V(110) plane by calculating the interlayer relaxation, the layer structure factor and atomic snapshots in this paper. The results obtained indicate that the premelting phenomenon occurs on the V(110) surface at about 1800K and then a liquid-like layer, which approximately keeps the same thickness up to 2020K, emerges on it. We discover that the temperature 2020K the V(110) surface starts to melt and is in a completely disordered state at the temperature of 2140K under the melting point for the bulk vanadium.展开更多
The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extr...The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extracted.Based upon the EAM potentials,thebinding energy and the self-trapping of helium in nickel are investigated with molecular dynam-ics simulation.展开更多
The microstructure and thermal stability of nanocrystalline vanadium with an average grain size ranging from 2.86 to 7.50 nm are calculated by means of the analytic embedded-atom method and molecular dynamics. The gra...The microstructure and thermal stability of nanocrystalline vanadium with an average grain size ranging from 2.86 to 7.50 nm are calculated by means of the analytic embedded-atom method and molecular dynamics. The grain boundary and nanocrystal- line grain atoms are differentiated by the common neighbor analysis method. The results indicate that the fraction of grain boundary increases with the grain size decreasing, and the mean energy of atoms is higher than that of coarse crystals. The thermal-stable tem- peratures of nanocrystalline vanadium are determined from the evolution of atomic energy, fraction of grain boundary and radial distribution function. It is shown that the stable tem- perature decreases obviously with the grain size decreasing. In addition the reasons which cause the grain growth of nanocrystalline vanadium are discussed.展开更多
基金Project(51274167)supported by the National Natural Science Foundation of ChinaProject(LQ14E010002)supported by the Zhejiang Provincial Natural Science Foundation of ChinaProject(2E24692)supported by the KIST Institutional Programs,Korea
文摘A semi-empirical interatomic potential formalism,the second-nearest-neighbor modified embedded-atom method(2NN MEAM),has been applied to obtaining interatomic potentials for the Co-W and Al-W binary system using previously developed MEAM potentials of Co,Al and W.The potential parameters were determined by fitting the experimental data on the enthalpy of formation,lattice parameter,melting point and elastic constants.The present potentials generally reproduce the fundamental physical properties of the Co-W and Al-W systems accurately.The lattice parameters,the enthalpy of formation,the thermal stability and the elastic constants match well with experiment and the first-principles results.The enthalpy of mixing and the enthalpy of formation and mixing of liquid are in good agreement with CALPHAD calculations.The potentials can be easily combined with already-developed MEAM potentials for binary cobalt systems and can be used to describe Co-Al-W-based multicomponent alloys,especially for interfacial properties.
文摘A simple analytic embedded-atom model of monoatoms that includes more than nearest neighbours has been extended to study properties of binary liquid Cu-Ni alloys, here the two-body potential between different species of atoms is taken as a function of the two-body potential for the pure metals with a unique form which yields alloy models with the same invariance to electron density transformations as monoatomic models. Faber-Ziman structure factors have been computed by molecular dynamics simulation on the base of this model. The results are in good agreement with experimental data given by Waseda, thus supporting the overall validity of the approach, especially for cross potential of Cu-Ni pair. Further, a detailed description of structure of binary liquid Cu-Ni alloys with different compositions have been performed using pair analysis and bond orientational order method etc., and then the chemical short range order has also been examined to reveal the structural characterization.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB606401)
文摘The structural properties, the enthalpies of formation, and the mechanical properties of some Ni-Al intermetallic compounds (NiAl, Ni3Al, NiAl3, Ni5Al3, Ni3Al4) are studied by using Chen's lattice inversion embedded-atom method (CLI-EAM). Our calculated lattice parameters and cohesive energies of Ni-A1 compounds are consistent with the experimental and the other EAM results. The results of enthalpy of formation indicate a strong chemical interaction between Ni and Al in the intermetallic compounds. Through analyzing the alloy elastic constants, we find that all the Ni-Al intermetallic compounds discussed are mechanically stable. The bulk moduli of the compounds increase with the increasing Ni concentration. Our results also suggest that NiAl, Ni3Al, NiAl3, and Ni5Al3 are ductile materials with lower ratios of shear modulus to bulk modulus; while Ni3Al4 is brittle with a higher ratio.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB606402)the National Natural Science Foundation of China(Grant No.51071091)
文摘An Ni-AI-Co system embedded-atom-method potential is constructed for the γ(Ni)/γ'(Ni3A1) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, A1) random solid solutions are calculated as a function of the concentrations of Co and A1. The calculated SFEs decrease with increasing concentrations of Co and A1, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ(Ni) may be improved by the addition of Co.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB606401)
文摘The lattice-inversion embedded-atom-method interatomic potential developed previously by us is extended to alkaline metals including Li,Na,and K.It is found that considering interatomic interactions between neighboring atoms of an appropriate distance is a matter of great significance in constructing accurate embedded-atom-method interatomic potentials,especially for the prediction of surface energy.The lattice-inversion embedded-atom-method interatomic potentials for Li,Na,and K are successfully constructed by taking the fourth-neighbor atoms into consideration.These angular-independent potentials markedly promote the accuracy of predicted surface energies,which agree well with experimental results.In addition,the predicted structural stability,elastic constants,formation and migration energies of vacancy,and activation energy of vacancy diffusion are in good agreement with available experimental data and first-principles calculations,and the equilibrium condition is satisfied.
基金supported by the Department of Energy grant number DE-SC0004970the National Science Foundation under grant number DMS-1013845+1 种基金at the University of Texas by the Department of Energy grant number DEFG02-05ER25701by the Laboratory Directed Research and Development program at Sandia National Laboratories.
文摘We investigate connections between nonlocal continuum models and molecular dynamics.A continuous upscaling of molecular dynamics models of the form of the embedded-atom model is presented,providing means for simulating molecular dynamics systems at greatly reduced cost.Results are presented for structured and structureless material models,supported by computational experiments.The nonlocal continuum models are shown to be instances of the state-based peridynamics theory.Connections relating multibody peridynamic models and upscaled nonlocal continuum models are derived.
基金the National Key Research and Development Program of China(Grant No.2019YF40705400)National Natural Science Foundation of China(Grant Nos.51535005,51731006,and 51771093)+2 种基金the Research Fund of State Key Laboratory of Mechanics and Control of Me-chanical Structures(Grant Nos.MCMS-I-0418K01,MCMS-I-0419K01)the Fundamental Research Funds for the Central Universities(Grant Nos.NZ2020001,NC2018001,NP2019301,NJ20I 9002,and 30919011295)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Nb-doped TiAl alloys exhibit excellent mechanical properties at high temperatures,and the underlying mechanism and optimal doping amount remain elusive.Molecular dynamics simulation is helpful to clarify these problems,but most of the existing interatomic potentials are limited to the Ti-Al binary system and lack interatomic potentials for doped alloys.Here,an intera-tomic potential of Nb-Al-Ti ternary systems based on the modified embedded-atom method was developed.The ternary potential can accurately predict the structure and thermodynamic properties of the Nb-Al-Ti system.The potential shows that the optimal Nb content for high-temperature strength-ductility synergy of TiAl single crystals is 8%,consistent with the amount of miracle synthesis of TiAl single crystals.Tensile simulations further show that the developed potential can make an effective prediction at high temperatures,indicating the potential for the development and applications of high-temperature Nb-Al-Ti ternary systems.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50471010 and 50531040.
文摘The calculation of elastic constants of Ag/Pd superlattice thin films by molecular dynamics simulations with many-body potentials is presented. It reveals that the elastic constants C11 and C55 increase with decreasing modulation wavelength A of the films, which is consistent with experiments. However, the change of C11 and C55 with A is found to be around the values determined by a rule of mixture using bulk elastic constants of metals. No supermodulus effect is observed and it is due to cancellation between enhanced and reduced contributions to elastic constants from Ag and Pd layers subjected to compressive and tensile strains, respectively.
基金Supported by the National Natural Science Foundation of China under Nos 20236010 and 20476004, and the National Basic Research Programme of China under Grant No G2003CB615807.
文摘The melting behaviour of four typical core-shell structured 309-atom Ag-Rh bimetallic clusters, with decahedral and icosahedral geometric configurations, is investigated by using molecular dynamics simulation, based on the Sutton-Chen potential. The initial atomic configurations are obtained from semi-grand canonical ensemble Monte Carlo simulations. It is found that the melting point temperature Tm increases with the mole fraction of Rh in the bimetallic clusters, and Tm of Ag-Rh icosahedral clusters is higher than those of Ag-Rh decahedral clusters with the same Rh mole fraction. It is also found that the Ag atoms lie on the surface of Ag-Rh bimetallic clusters even after melting.
基金supported by the National Basic Research Program of China(Grant No.2011CB606400)
文摘Embedded-atom method (EAM) potentials are used to investigate the effects of alloying (e.g. 3d-metals) on the trends of elastic and thermodynamic properties for CuPd3 alloy. Our calculated lattice parameter, cohesive energy, and elastic constants of CuPd3 are consistent with the available experimental and theoretical data. The results of elastic constants indicate that all these alloys are mechanically stable. Further mechanical behavior analysis shows that the additions of Cr, Fe, Co, and Ni could improve the hardness of CuPd3 while V could well increase its ductility. Moreover, in order to evaluate the thermodynamic contribution of 3d-metals, the Debye temperature, phonon density of states, and vibrational entropy for CuMPd6 alloy are also investigated.
基金supported by the State Key Development Program for Basic Research of China (Grant No. 2004CB619302)the National Natural Science Foundation of China (Grant No. 51071098)
文摘With modified analytical embedded-atom method and molecular dynamics simulation, this paper simulates the strain energy and the equilibrium core structure of a(100) edge dislocation in BCC metal iron on atomistic scale. In addition, the trapping effect of dislocation on vacancy is investigated as well. The results show that the equilibrium dislocation core is quite narrow and has a C2v symmetry structure. Calculated strain energy Es of the dislocation is a linear function of ln(R/2b) while R ≥ 5.16 A(1A = 0.1 nm), in excellent agreement with the elasticity theory prediction. Determined core radius and energy are 5.16 A and 0.62 eV/A, respectively. The closer the vacancy to the dislocation line is, the lower the vacancy formation energy is, this fact implies that the dislocation has a trend to trap the vacancy, especially for a separation distance of the vacancy from dislocation line being less than two lattice constants.
文摘A consistent empirical embedded-atom potential that includes a long range force was developed for fcc (face-centered cubic) metals and alloys. The proposed potential for pure metals does not require modification of the initial function form when being applied to alloy systems. The potential parameters of this model were determined by fitting lattice constant, three elastic constants, cohesive energy, and vacancy formation energies of the pure metals and the heats of solution of the binary alloys via an optimization technique. Parameters for Ag, AI, Au, Cu, Ni, Pd and Pt were obtained. The obtained parameters were used to calculate the bulk modulus, divacancy formation energy, crystal stability, stacking fault energy, vacancy migration energy, and melting point for each pure metal and the heats of formation and lattice constants for binary alloys. The predicted values were in good agreement with experimental results.
基金supported by the National Natural Science Foundation of China (Grant No 50671035)the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No 07C445)the Grant of the 11th Five-year Plan for Key Construction Academic Subject of Hunan Province,China
文摘The modified analytic embedded-atom method and molecular dynamics simulations are applied to the investigation of the surface premelting and melting behaviours of the V(110) plane by calculating the interlayer relaxation, the layer structure factor and atomic snapshots in this paper. The results obtained indicate that the premelting phenomenon occurs on the V(110) surface at about 1800K and then a liquid-like layer, which approximately keeps the same thickness up to 2020K, emerges on it. We discover that the temperature 2020K the V(110) surface starts to melt and is in a completely disordered state at the temperature of 2140K under the melting point for the bulk vanadium.
基金The project supported by the National Natural Science Foundation of China
文摘The embedded-atom method(EAM)is used to study the behavior of helium in meta-ls.By fitting the measured parameters such as the activation energy and the heat of solution,the EAM potentials of helium in nickel are extracted.Based upon the EAM potentials,thebinding energy and the self-trapping of helium in nickel are investigated with molecular dynam-ics simulation.
基金supported by the National Natural Science Foundation of China(Grant No.50371026).
文摘The microstructure and thermal stability of nanocrystalline vanadium with an average grain size ranging from 2.86 to 7.50 nm are calculated by means of the analytic embedded-atom method and molecular dynamics. The grain boundary and nanocrystal- line grain atoms are differentiated by the common neighbor analysis method. The results indicate that the fraction of grain boundary increases with the grain size decreasing, and the mean energy of atoms is higher than that of coarse crystals. The thermal-stable tem- peratures of nanocrystalline vanadium are determined from the evolution of atomic energy, fraction of grain boundary and radial distribution function. It is shown that the stable tem- perature decreases obviously with the grain size decreasing. In addition the reasons which cause the grain growth of nanocrystalline vanadium are discussed.