The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on...The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on maximal overlap discrete wavelet packet transformation (MODWPT) is developed. By the simulation test for soil embedded pipes fault-detection, it is shown that the performance of newly proposed HFRT algorithms is more sensitive to early defects than the traditional HFRT methods based on the Hilbert transform.展开更多
为进一步优化重叠社区检测算法,提出了一种新的基于度和节点聚类系数的节点重要性定义,按照节点重要性降序更新节点,固定节点更新策略,提高社区检测的稳定性。在此基础上,提出了一种基于图嵌入和多标签传播的重叠社区检测算法(overlappi...为进一步优化重叠社区检测算法,提出了一种新的基于度和节点聚类系数的节点重要性定义,按照节点重要性降序更新节点,固定节点更新策略,提高社区检测的稳定性。在此基础上,提出了一种基于图嵌入和多标签传播的重叠社区检测算法(overlapping community detection based on graph embedding and multi-label propagation algorithm,OCD-GEMPA)。该算法结合node2vec模型对节点进行低维向量表示,构建节点之间的权重值矩阵,根据权重值计算标签归属系数,据此选择标签,避免了随机选择问题。在真实数据集和人工合成数据集上对该算法进行实验验证。实验结果表明,与其他重叠社区检测算法相比,OCD-GEMPA在EQ和NMI这两个指标都有明显提升,具有更好的准确性和稳定性。展开更多
密度峰值是一种基于密度的聚类算法,该算法假设类簇中心点具有较高的密度且被密度较小的节点包围。由于图结构的性质,密度峰值无法直接适用于网络结构,现有的基于密度峰值的社区发现算法大部分是基于图的拓扑结构或者邻接矩阵度量节点...密度峰值是一种基于密度的聚类算法,该算法假设类簇中心点具有较高的密度且被密度较小的节点包围。由于图结构的性质,密度峰值无法直接适用于网络结构,现有的基于密度峰值的社区发现算法大部分是基于图的拓扑结构或者邻接矩阵度量节点近似度,这种方法往往引入较大的计算复杂度。文中结合网络嵌入方法通过低维向量表示网络中的节点信息,提出了一种基于密度峰值和网络嵌入的重叠社区发现算法(overlapping community detection based on density network embedding, OCDDNE)。该算法首先通过网络嵌入获取节点的网络结构特征,然后基于改进的密度峰值的方法对嵌入后的节点向量进行多标签聚类,使编码后的向量之间的结构关系得到更好的揭示,从而发现网络中的重叠社区结构。在人工网络和真实网络的验证实验表明,该算法可以有效的挖掘网络中的重叠社区结构,并在结构复杂度较高的网络中优于其他算法。展开更多
文摘The high frequency resonant technique (HFRT) algorithm is a popular technique for fault-detection and is widely applied in mechanism systems and industrial constructions. In this paper, a new HFRT algorithm based on maximal overlap discrete wavelet packet transformation (MODWPT) is developed. By the simulation test for soil embedded pipes fault-detection, it is shown that the performance of newly proposed HFRT algorithms is more sensitive to early defects than the traditional HFRT methods based on the Hilbert transform.
文摘为进一步优化重叠社区检测算法,提出了一种新的基于度和节点聚类系数的节点重要性定义,按照节点重要性降序更新节点,固定节点更新策略,提高社区检测的稳定性。在此基础上,提出了一种基于图嵌入和多标签传播的重叠社区检测算法(overlapping community detection based on graph embedding and multi-label propagation algorithm,OCD-GEMPA)。该算法结合node2vec模型对节点进行低维向量表示,构建节点之间的权重值矩阵,根据权重值计算标签归属系数,据此选择标签,避免了随机选择问题。在真实数据集和人工合成数据集上对该算法进行实验验证。实验结果表明,与其他重叠社区检测算法相比,OCD-GEMPA在EQ和NMI这两个指标都有明显提升,具有更好的准确性和稳定性。
文摘密度峰值是一种基于密度的聚类算法,该算法假设类簇中心点具有较高的密度且被密度较小的节点包围。由于图结构的性质,密度峰值无法直接适用于网络结构,现有的基于密度峰值的社区发现算法大部分是基于图的拓扑结构或者邻接矩阵度量节点近似度,这种方法往往引入较大的计算复杂度。文中结合网络嵌入方法通过低维向量表示网络中的节点信息,提出了一种基于密度峰值和网络嵌入的重叠社区发现算法(overlapping community detection based on density network embedding, OCDDNE)。该算法首先通过网络嵌入获取节点的网络结构特征,然后基于改进的密度峰值的方法对嵌入后的节点向量进行多标签聚类,使编码后的向量之间的结构关系得到更好的揭示,从而发现网络中的重叠社区结构。在人工网络和真实网络的验证实验表明,该算法可以有效的挖掘网络中的重叠社区结构,并在结构复杂度较高的网络中优于其他算法。