Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing in...The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability.展开更多
To solve the shortcomings of Particle Swarm Optimization(PSO)algorithm,local optimization and slow convergence,an Opposition-based Learning Adaptive Chaotic PSO(LCPSO)algorithm was presented.The chaotic elite oppositi...To solve the shortcomings of Particle Swarm Optimization(PSO)algorithm,local optimization and slow convergence,an Opposition-based Learning Adaptive Chaotic PSO(LCPSO)algorithm was presented.The chaotic elite opposition-based learning process was applied to initialize the entire population,which enhanced the quality of the initial individuals and the population diversity,made the initial individuals distribute in the better quality areas,and accelerated the search efficiency of the algorithm.The inertia weights were adaptively customized during evolution in the light of the degree of premature convergence to balance the local and global search abilities of the algorithm,and the reverse search strategy was introduced to increase the chances of the algorithm escaping the local optimum.The LCPSO algorithm is contrasted to other intelligent algorithms on 10 benchmark test functions with different characteristics,and the simulation experiments display that the proposed algorithm is superior to other intelligence algorithms in the global search ability,search accuracy and convergence speed.In addition,the robustness and effectiveness of the proposed algorithm are also verified by the simulation results of engineering design problems.展开更多
Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-...Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.展开更多
This study attempts to accelerate the learning ability of an artificial electric field algorithm(AEFA)by attributing it with two mechanisms:elitism and opposition-based learning.Elitism advances the convergence of the...This study attempts to accelerate the learning ability of an artificial electric field algorithm(AEFA)by attributing it with two mechanisms:elitism and opposition-based learning.Elitism advances the convergence of the AEFA towards global optima by retaining the fine-tuned solutions obtained thus far,and opposition-based learning helps enhance its exploration ability.The new version of the AEFA,called elitist opposition leaning-based AEFA(EOAEFA),retains the properties of the basic AEFA while taking advantage of both elitism and opposition-based learning.Hence,the improved version attempts to reach optimum solutions by enabling the diversification of solutions with guaranteed convergence.Higher-order neural networks(HONNs)have single-layer adjustable parameters,fast learning,a robust fault tolerance,and good approximation ability compared with multilayer neural networks.They consider a higher order of input signals,increased the dimensionality of inputs through functional expansion and could thus discriminate between them.However,determining the number of expansion units in HONNs along with their associated parameters(i.e.,weight and threshold)is a bottleneck in the design of such networks.Here,we used EOAEFA to design two HONNs,namely,a pi-sigma neural network and a functional link artificial neural network,called EOAEFA-PSNN and EOAEFA-FLN,respectively,in a fully automated manner.The proposed models were evaluated on financial time-series datasets,focusing on predicting four closing prices,four exchange rates,and three energy prices.Experiments,comparative studies,and statistical tests were conducted to establish the efficacy of the proposed approach.展开更多
Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and ...Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and stability of GTOwill deterioratewhen the optimization problems to be solved becomemore complex and flexible.To overcome these defects and achieve better performance,this paper proposes an improved gorilla troops optimizer(IGTO).First,Circle chaotic mapping is introduced to initialize the positions of gorillas,which facilitates the population diversity and establishes a good foundation for global search.Then,in order to avoid getting trapped in the local optimum,the lens opposition-based learning mechanism is adopted to expand the search ranges.Besides,a novel local search-based algorithm,namely adaptiveβ-hill climbing,is amalgamated with GTO to increase the final solution precision.Attributed to three improvements,the exploration and exploitation capabilities of the basic GTOare greatly enhanced.The performance of the proposed algorithm is comprehensively evaluated and analyzed on 19 classical benchmark functions.The numerical and statistical results demonstrate that IGTO can provide better solution quality,local optimumavoidance,and robustness compared with the basic GTOand five other wellknown algorithms.Moreover,the applicability of IGTOis further proved through resolving four engineering design problems and training multilayer perceptron.The experimental results suggest that IGTO exhibits remarkable competitive performance and promising prospects in real-world tasks.展开更多
As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the...As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems.展开更多
The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite ...The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite its widespread success,training MLPs often encounter significant challenges,including susceptibility to local optima,slow convergence rates,and high sensitivity to initial weight configurations.To address these issues,this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer(LOEV-APO),which enhances both global exploration and local exploitation simultaneously.LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling(LHS)with Opposition-Based Learning(OBL),thus improving the diversity and coverage of the initial population.Moreover,an Elite Protozoa Variation Strategy(EPVS)is incorporated,which applies differential mutation operations to elite candidates,accelerating convergence and strengthening local search capabilities around high-quality solutions.Extensive experiments are conducted on six classification tasks and four function approximation tasks,covering a wide range of problem complexities and demonstrating superior generalization performance.The results demonstrate that LOEV-APO consistently outperforms nine state-of-the-art metaheuristic algorithms and two gradient-based methods in terms of convergence speed,solution accuracy,and robustness.These findings suggest that LOEV-APO serves as a promising optimization tool for MLP training and provides a viable alternative to traditional gradient-based methods.展开更多
Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the ...Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the local search technique which leads to a loss of diversity,getting stuck in a local minimum,and procuring premature convergence.In response to these defects,this paper proposes an improved ChOA algorithm based on using Opposition-based learning(OBL)to enhance the choice of better solutions,written as OChOA.Then,utilizing Reinforcement Learning(RL)to improve the local research technique of OChOA,called RLOChOA.This way effectively avoids the algorithm falling into local optimum.The performance of the proposed RLOChOA algorithm is evaluated using the Friedman rank test on a set of CEC 2015 and CEC 2017 benchmark functions problems and a set of CEC 2011 real-world problems.Numerical results and statistical experiments show that RLOChOA provides better solution quality,convergence accuracy and stability compared with other state-of-the-art algorithms.展开更多
针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐...针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。展开更多
针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment...针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。展开更多
为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种...为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。展开更多
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金support from the Ningxia Natural Science Foundation Project(2023AAC03361).
文摘The flying foxes optimization(FFO)algorithm,as a newly introduced metaheuristic algorithm,is inspired by the survival tactics of flying foxes in heat wave environments.FFO preferentially selects the best-performing individuals.This tendency will cause the newly generated solution to remain closely tied to the candidate optimal in the search area.To address this issue,the paper introduces an opposition-based learning-based search mechanism for FFO algorithm(IFFO).Firstly,this paper introduces niching techniques to improve the survival list method,which not only focuses on the adaptability of individuals but also considers the population’s crowding degree to enhance the global search capability.Secondly,an initialization strategy of opposition-based learning is used to perturb the initial population and elevate its quality.Finally,to verify the superiority of the improved search mechanism,IFFO,FFO and the cutting-edge metaheuristic algorithms are compared and analyzed using a set of test functions.The results prove that compared with other algorithms,IFFO is characterized by its rapid convergence,precise results and robust stability.
基金supported by the National Natural Science Foundation of China(61572444,62176238)Natural Science Foundation of Henan Province,China(222300420088)+3 种基金Training Program of Young Backbone teachers in Colleges and universities in Henan Province,China(2020GGJS006)Program for Science&Technology Innovation Talents in Universities of Henan Province,China(23HASTIT023)Program for Science&Technology Innovation Teams in Universities of Henan Province,China(23IRTSTHN010)National Key Research and Development Program of China(2022YFD2001205).
文摘To solve the shortcomings of Particle Swarm Optimization(PSO)algorithm,local optimization and slow convergence,an Opposition-based Learning Adaptive Chaotic PSO(LCPSO)algorithm was presented.The chaotic elite opposition-based learning process was applied to initialize the entire population,which enhanced the quality of the initial individuals and the population diversity,made the initial individuals distribute in the better quality areas,and accelerated the search efficiency of the algorithm.The inertia weights were adaptively customized during evolution in the light of the degree of premature convergence to balance the local and global search abilities of the algorithm,and the reverse search strategy was introduced to increase the chances of the algorithm escaping the local optimum.The LCPSO algorithm is contrasted to other intelligent algorithms on 10 benchmark test functions with different characteristics,and the simulation experiments display that the proposed algorithm is superior to other intelligence algorithms in the global search ability,search accuracy and convergence speed.In addition,the robustness and effectiveness of the proposed algorithm are also verified by the simulation results of engineering design problems.
文摘Efficient speed controllers for dynamic driving tasks in autonomous vehicles are crucial for ensuring safety and reliability.This study proposes a novel approach for designing a fractional order proportional-integral-derivative(FOPID)controller that utilizes a modified elite opposition-based artificial hummingbird algorithm(m-AHA)for optimal parameter tuning.Our approach outperforms existing optimization techniques on benchmark functions,and we demonstrate its effectiveness in controlling cruise control systems with increased flexibility and precision.Our study contributes to the advancement of autonomous vehicle technology by introducing a novel and efficient method for FOPID controller design that can enhance the driving experience while ensuring safety and reliability.We highlight the significance of our findings by demonstrating how our approach can improve the performance,safety,and reliability of autonomous vehicles.This study’s contributions are particularly relevant in the context of the growing demand for autonomous vehicles and the need for advanced control techniques to ensure their safe operation.Our research provides a promising avenue for further research and development in this area.
基金supported by the Yonsei Fellow Program funded by Lee Youn Jae,Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korean government,Ministry of Science and ICT(MSIT)(No.2020-0-01361,Artificial Intelligence Graduate School Program(Yonsei University)No.2022-0-00113,Developing a Sustainable Collaborative Multi-modal Lifelong Learning Framework)the support of Teachers Associateship for Research Excellence(TARE)Fellowship(No.TAR/2021/00006)of the Science and Engineering Research Board(SERB),Government of India.
文摘This study attempts to accelerate the learning ability of an artificial electric field algorithm(AEFA)by attributing it with two mechanisms:elitism and opposition-based learning.Elitism advances the convergence of the AEFA towards global optima by retaining the fine-tuned solutions obtained thus far,and opposition-based learning helps enhance its exploration ability.The new version of the AEFA,called elitist opposition leaning-based AEFA(EOAEFA),retains the properties of the basic AEFA while taking advantage of both elitism and opposition-based learning.Hence,the improved version attempts to reach optimum solutions by enabling the diversification of solutions with guaranteed convergence.Higher-order neural networks(HONNs)have single-layer adjustable parameters,fast learning,a robust fault tolerance,and good approximation ability compared with multilayer neural networks.They consider a higher order of input signals,increased the dimensionality of inputs through functional expansion and could thus discriminate between them.However,determining the number of expansion units in HONNs along with their associated parameters(i.e.,weight and threshold)is a bottleneck in the design of such networks.Here,we used EOAEFA to design two HONNs,namely,a pi-sigma neural network and a functional link artificial neural network,called EOAEFA-PSNN and EOAEFA-FLN,respectively,in a fully automated manner.The proposed models were evaluated on financial time-series datasets,focusing on predicting four closing prices,four exchange rates,and three energy prices.Experiments,comparative studies,and statistical tests were conducted to establish the efficacy of the proposed approach.
基金This work is financially supported by the Fundamental Research Funds for the Central Universities under Grant 2572014BB06.
文摘Gorilla troops optimizer(GTO)is a newly developed meta-heuristic algorithm,which is inspired by the collective lifestyle and social intelligence of gorillas.Similar to othermetaheuristics,the convergence accuracy and stability of GTOwill deterioratewhen the optimization problems to be solved becomemore complex and flexible.To overcome these defects and achieve better performance,this paper proposes an improved gorilla troops optimizer(IGTO).First,Circle chaotic mapping is introduced to initialize the positions of gorillas,which facilitates the population diversity and establishes a good foundation for global search.Then,in order to avoid getting trapped in the local optimum,the lens opposition-based learning mechanism is adopted to expand the search ranges.Besides,a novel local search-based algorithm,namely adaptiveβ-hill climbing,is amalgamated with GTO to increase the final solution precision.Attributed to three improvements,the exploration and exploitation capabilities of the basic GTOare greatly enhanced.The performance of the proposed algorithm is comprehensively evaluated and analyzed on 19 classical benchmark functions.The numerical and statistical results demonstrate that IGTO can provide better solution quality,local optimumavoidance,and robustness compared with the basic GTOand five other wellknown algorithms.Moreover,the applicability of IGTOis further proved through resolving four engineering design problems and training multilayer perceptron.The experimental results suggest that IGTO exhibits remarkable competitive performance and promising prospects in real-world tasks.
基金supported by the First Batch of Teaching Reform Projects of Zhejiang Higher Education“14th Five-Year Plan”(jg20220434)Special Scientific Research Project for Space Debris and Near-Earth Asteroid Defense(KJSP2020020202)+1 种基金Natural Science Foundation of Zhejiang Province(LGG19F030010)National Natural Science Foundation of China(61703183).
文摘As a new bionic algorithm,Spider Monkey Optimization(SMO)has been widely used in various complex optimization problems in recent years.However,the new space exploration power of SMO is limited and the diversity of the population in SMO is not abundant.Thus,this paper focuses on how to reconstruct SMO to improve its performance,and a novel spider monkey optimization algorithm with opposition-based learning and orthogonal experimental design(SMO^(3))is developed.A position updatingmethod based on the historical optimal domain and particle swarmfor Local Leader Phase(LLP)andGlobal Leader Phase(GLP)is presented to improve the diversity of the population of SMO.Moreover,an opposition-based learning strategy based on self-extremum is proposed to avoid suffering from premature convergence and getting stuck at locally optimal values.Also,a local worst individual elimination method based on orthogonal experimental design is used for helping the SMO algorithm eliminate the poor individuals in time.Furthermore,an extended SMO^(3)named CSMO^(3)is investigated to deal with constrained optimization problems.The proposed algorithm is applied to both unconstrained and constrained functions which include the CEC2006 benchmark set and three engineering problems.Experimental results show that the performance of the proposed algorithm is better than three well-known SMO algorithms and other evolutionary algorithms in unconstrained and constrained problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.62376089,62302153,62302154)the Key Research and Development Program of Hubei Province,China(Grant No.2023BEB024)+1 种基金the Young and Middle-Aged Scientific and Technological Innovation Team Plan in Higher Education Institutions in Hubei Province,China(Grant No.T2023007)the National Natural Science Foundation of China(Grant No.U23A20318).
文摘The Multilayer Perceptron(MLP)is a fundamental neural network model widely applied in various domains,particularly for lightweight image classification,speech recognition,and natural language processing tasks.Despite its widespread success,training MLPs often encounter significant challenges,including susceptibility to local optima,slow convergence rates,and high sensitivity to initial weight configurations.To address these issues,this paper proposes a Latin Hypercube Opposition-based Elite Variation Artificial Protozoa Optimizer(LOEV-APO),which enhances both global exploration and local exploitation simultaneously.LOEV-APO introduces a hybrid initialization strategy that combines Latin Hypercube Sampling(LHS)with Opposition-Based Learning(OBL),thus improving the diversity and coverage of the initial population.Moreover,an Elite Protozoa Variation Strategy(EPVS)is incorporated,which applies differential mutation operations to elite candidates,accelerating convergence and strengthening local search capabilities around high-quality solutions.Extensive experiments are conducted on six classification tasks and four function approximation tasks,covering a wide range of problem complexities and demonstrating superior generalization performance.The results demonstrate that LOEV-APO consistently outperforms nine state-of-the-art metaheuristic algorithms and two gradient-based methods in terms of convergence speed,solution accuracy,and robustness.These findings suggest that LOEV-APO serves as a promising optimization tool for MLP training and provides a viable alternative to traditional gradient-based methods.
文摘Chimp Optimization Algorithm(ChOA)is one of the most efficient recent optimization algorithms,which proved its ability to deal with different problems in various do-mains.However,ChOA suffers from the weakness of the local search technique which leads to a loss of diversity,getting stuck in a local minimum,and procuring premature convergence.In response to these defects,this paper proposes an improved ChOA algorithm based on using Opposition-based learning(OBL)to enhance the choice of better solutions,written as OChOA.Then,utilizing Reinforcement Learning(RL)to improve the local research technique of OChOA,called RLOChOA.This way effectively avoids the algorithm falling into local optimum.The performance of the proposed RLOChOA algorithm is evaluated using the Friedman rank test on a set of CEC 2015 and CEC 2017 benchmark functions problems and a set of CEC 2011 real-world problems.Numerical results and statistical experiments show that RLOChOA provides better solution quality,convergence accuracy and stability compared with other state-of-the-art algorithms.
文摘针对以往船舶备件需求预测精度不高,无法满足船舶综合保障的实际问题,文章建立一种基于改进红狐优化算法(improved red fox optimization,IRFO)的支持向量机回归(support vector regression,SVR)的船舶备件预测模型。为进一步提高红狐优化算法(red fox optimization,RFO)的寻优精度,重构其全局搜索公式,并融合精英反向学习策略。采用基准测试函数对IRFO算法进行仿真实验,实验表明,IRFO算法比RFO算法、粒子群算法、灰狼优化算法寻优能力更强,综合性能更优。基于船舶备件历史数据,建立IRFO-SVR船舶备件预测模型,通过对比其他模型的预测结果,表明IRFO-SVR的预测效果更佳。
文摘针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。
文摘为提升哈里斯鹰优化算法收敛精度,解决易陷入局部最优等问题,提出了一种基于迭代混沌精英反向学习和黄金正弦策略的哈里斯鹰优化算法(gold sine HHO,GSHHO)。利用无限迭代混沌映射初始化种群,运用精英反向学习策略筛选优质种群,提高种群质量,增强算法的全局搜索能力;使用一种收敛因子调整策略重新计算猎物能量,平衡算法的全局探索和局部开发能力;在哈里斯鹰的开发阶段引入黄金正弦策略,替换原有的位置更新方法,提升算法的局部开发能力;在9个测试函数和不同规模的栅格地图上评估GSHHO的有效性。实验结果表明:GSHHO在不同测试函数中具有较好的寻优精度和稳定性能,在2次机器人路径规划中路径长度较原始HHO算法分别减少4.4%、3.17%,稳定性分别提升52.98%、63.12%。