期刊文献+
共找到692,753篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of long-term elevated CO_2 on N_2-fixing,denitrifying and nitrifying enzyme activities in forest soils under Pinus sylvestriformis in Changbai Mountain 被引量:4
1
作者 郑俊强 韩士杰 +2 位作者 任飞荣 周玉梅 张岩 《Journal of Forestry Research》 SCIE CAS CSCD 2008年第4期283-287,共5页
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete... A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24"N, 128°06"E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5-10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P 〈 0.012) and August 2006 (P 〈 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities. 展开更多
关键词 elevated co2 forest soil nitrifying enzyme denitrifying enzyme N2-fixing enzyme
在线阅读 下载PDF
The contribution of root respiration of Pinus koraiensis seedlings to total soil respiration under elevated CO_2 concentrations 被引量:14
2
作者 刘颖 韩士杰 +3 位作者 李雪峰 周玉梅 张军辉 贾夏 《Journal of Forestry Research》 SCIE CAS CSCD 2004年第3期187-191,共5页
The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to Oc... The impacts of elevated atmospheric CO2 concentrations (500 靘olmol-1and 700 靘olmol-1) on total soil respiration and the contribution of root respiration of Pinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration of Pinus koraiensis seedlings were measured by a LI-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil in-stantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 靘olm 2s-1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. 展开更多
关键词 Contribution of root respiration elevated co2 Pinus koraiensis Root-severed technique Soil respiration
在线阅读 下载PDF
Response of Photosynthesis, Growth, Carbon Isotope Discrimination and Osmotic Tolerance of Rice to Elevated CO_2 被引量:3
3
作者 彭长连 段俊 +2 位作者 林桂珠 陈贻竹 彭少麟 《Acta Botanica Sinica》 CSCD 2002年第1期76-81,共6页
Four rice ( Oryza sativa L.) cultivars 'IR72', 'Tesanai 2', 'Guichao 2' and 'IIyou 4480' were grown in two plastic house (15 m×3 m) with 35 μmol/mol and 60 μmol/mol CO 2 conc... Four rice ( Oryza sativa L.) cultivars 'IR72', 'Tesanai 2', 'Guichao 2' and 'IIyou 4480' were grown in two plastic house (15 m×3 m) with 35 μmol/mol and 60 μmol/mol CO 2 concentration which was controlled by computer. As compared with rice at ambient 35 μmol/mol CO 2, the changes in photosynthetic rate at elevated CO 2 showed up_regulation ('IR72' and 'Tesanai 2'), stable (unchanged) in 'Guichao 2' and down_regulation type ('IIyou 4480'). Growth rate, panicle weight, integrated water use efficiency (WUE) calculated from Δ 13 C and the capacity of scavenging DPPH · (1,1_diphenyl_2_picrylhydrazyl) free radical were increased at elevated CO 2. An increment in total biomass was observed in three cultivars by elevated CO 2, with the exception of 'IIyou 4480'. Ratios of panicle weight/total biomass were altered to different extents in tested cultivars by elevated CO 2. When leaf segments were subjected to PEG osmotic stress, the electrolyte leakage rate from leaves grown at elevated CO 2 was less than that at 35 μmol/mol CO 2. Those intraspecific variations of rice imply a possibility for selecting cultivars with maximal productivity and high tolerance to stresses adapted to elevated CO 2 in the future. 展开更多
关键词 rice cultivars elevated CO 2 PHOTOSYNTHESIS water use efficiency 13 C discrimination osmotic tolerance
在线阅读 下载PDF
Response of seedlings of different tree species to elevated CO_2 in Changbai Mountain 被引量:1
4
作者 王淼 李秋荣 +1 位作者 代力民 姬兰柱 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第2期112-116,共5页
Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadlea... Eco-physiological responses of seedlings of eight species, Pinus koraiensis, Picea koraiensis, Larix olgensis, Populus ussuriensis, Betula platyphylla, Tilia amurensis, Traxinus mandshurica and Acer mono from broadleaved/Korean pine forest, to elevated CO2 were studied by using open-top chambers under natural sunlight in Changbai Mountain, China in two growing seasons (1998-1999). Two concentrations of CO2 were designed: elevated CO2 (700 祄olmol-1) and ambient CO2 (400 祄olmol-1). The study results showed that the height growth of the tree seedlings grown at elevated CO2 increased by about 10%-40% compared to those grown at ambient CO2. And the water using efficiency of seedlings also followed the same tendency. However, the responses of seedlings in transpiration and chlorophyll content to elevated CO2 varied with tree species. The broad-leaf tree species were more sensitive to the elevated CO2 than conifer tree species. All seedlings showed a photosynthetic acclimation to long-term elevated CO2. 展开更多
关键词 elevated CO_2 Eco-physiological response Changbai Mountain
在线阅读 下载PDF
STRUCTURAL RESPONSE OF SOYBEAN LEAF TO ELEVATED CO_2 CONCENTRATION 被引量:26
5
作者 林金星 胡玉熹 《Acta Botanica Sinica》 CSCD 1996年第1期31-34,共4页
The effects of CO 2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM.It was noticed that exomorphology did not show dra... The effects of CO 2 concentration on the morphological and anatomical characters of soybean (Glycine max) leaf were investigated by means of light microscopy and SEM.It was noticed that exomorphology did not show dramatic change,while stomatal density decreased with increasing CO 2 concentration.Under SEM,no epicuticular wax was observed on both abaxial and adaxial sides of the control group as well as on adaxial side of the treatment group.However,leaf surface of abaxial side was noticed to be densely covered with microasterisk epicuticular wax when they were exposed to CO 2 enriched environment.The epicuticular wax deposition was present in equal abundance on both stomatal and nonstomatal areas.Furthermore,leaf thickness increased significantly due largely to the origin of an extra layer of palisade in the treatment group.The results confirmed that CO 2 enrichment might enhance cell division and induce greater quantity of epicuticular wax. 展开更多
关键词 SOYBEAN Foliar structure CO 2 concentration
在线阅读 下载PDF
Effects of Nitrogen Supply on the Physiological and Morphological Responses to Elevated [CO2] in Yellow Birch (Betula alleghaniensis Britt.)
6
作者 Piumi Maheshika Godakanda Sahari Inoue +1 位作者 Binyam Tedla Qing-Lai Dang 《American Journal of Plant Sciences》 2025年第1期88-113,共26页
Climate change impacts soil nitrogen, influencing plant responses to elevated atmospheric [CO2]. Understanding the interaction between nitrogen supply and elevated [CO2] is crucial for predicting plant future performa... Climate change impacts soil nitrogen, influencing plant responses to elevated atmospheric [CO2]. Understanding the interaction between nitrogen supply and elevated [CO2] is crucial for predicting plant future performance. This study examined the interactive effects of elevated [CO2] and nitrogen supply on the eco-physiological performance of yellow birch. Seedlings were exposed to two [CO2] levels and five nitrogen supply levels for 4 months. Growth parameters such as seedling height and root collar diameter increased with higher nitrogen supply and elevated [CO2], while specific leaf area decreased. [CO2] elevation and increasing nitrogen supply also increased the total and stem, and leaf biomass. The elevated [CO2] increased the stem mass ratio but decreased the root-to-shoot ratio and root mass ratio. However, decreases in nitrogen supply increased root mass ratio and root-to-shoot ratio. The elevated [CO2] increased the maximum rate of Rubisco carboxylation (Vcmax) and photosynthetic electron transport (Jmax), but the effect on Jmax was statistically significant only at the two highest nitrogen supply levels. The results indicate that yellow birch may increase photosynthetic capacity, biomass, and growth in the future when [CO2] is higher. 展开更多
关键词 Climate Change Yellow Birch (Betula alleghaniensis Britt.) elevated [co2] Soil Nitrogen Availability Growth Biomass PHOTOSYNTHESIS
在线阅读 下载PDF
Effects of elevated CO_2 concentration and nitrogen supply on biomass and active carbon of freshwater marsh after two growing seasons in Sanjiang Plain, Northeast China 被引量:14
7
作者 ZHAO Guangying LIU Jingshuang +2 位作者 WANG Yang DOU Jingxin DONG Xiaoyong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2009年第10期1393-1399,共7页
An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Cala... An experiments were carried out with treatments differing in nitrogen supply (0, 5 and 15 g N/m^2) and CO2 levels (350 and 700 μmol/mol) using OTC (open top chamber) equipment to investigate the biomass of Calamagrostis angustifolia and soil active carbon contents after two years. The results showed that elevated CO2 concentration increased the biomass of C. angustifolia and the magnitude of response varied with each growth period. Elevated CO2 concentration has increased aboveground biomass by 16.7% and 17.6% during the jointing and heading periods and only 3.5% and 9.4% during dough and maturity periods. The increases in belowground biomass due to CO2 elevation was 26.5%, 34.0% and 28.7% during the heading, dough and maturity periods, respectively. The responses of biomass to enhanced CO2 concentrations are differed in N levels. Both the increase of aboveground biomass and belowground biomass were greater under high level of N supply (15 g N/m^2). Elevated CO2 concentration also increased the allocation of biomass and carbon in root. Under elevated CO2 concentration, the average values of active carbon tended to increase. The increases of soil active soil contents followed the sequence of microbial biomass carbon (10.6%) 〉 dissolved organic carbon (7.5%) 〉 labile oxidable carbon (6.6%) 〉 carbohydrate carbon (4.1%). Stepwise regressions indicated there were significant correlations between the soil active carbon contents and plant biomass. Particularly, microbial biomass carbon, labile oxidable carbon and carbohydrate carbon were found to be correlated with belowground biomass, while dissolved organic carbon has correlation with aboveground biomass. Therefore, increased biomass was regarded as the main driving force for the increase in soil active organic carbon under elevated CO2 concentration. 展开更多
关键词 elevated co2 concentration freshwater marsh BIOMASS soil active carbon
在线阅读 下载PDF
Nitrogen Deficiency Limited the Improvement of Photosynthesis in Maize by Elevated CO_2 Under Drought 被引量:9
8
作者 ZONG Yu-zheng SHANGGUAN Zhou-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第1期73-81,共9页
Global environmental change affects plant physiological and ecosystem processes. The interaction of elevated CO2, drought and nitrogen (N) deficiency result in complex responses of C4 species photosynthetic process ... Global environmental change affects plant physiological and ecosystem processes. The interaction of elevated CO2, drought and nitrogen (N) deficiency result in complex responses of C4 species photosynthetic process that challenge our current understanding. An experiment of maize (Zea mays L.) involving CO2 concentrations (380 or 750 μmol mol1, climate chamber), osmotic stresses (10% PEG-6000, -0.32 MPa) and nitrogen constraints (N deficiency treated since the 144th drought hour) was carried out to investigate its photosynthesis capacity and leaf nitrogen use efficiency. Elevated CO2 could alleviate drought-induced photosynthetic limitation through increasing capacity of PEPC carboxylation (Vp~,x) and decreasing stomatal limitations (SL). The N deficiency exacerbated drought-induced photosynthesis limitations in ambient CO2. Elevated CO2 partially alleviated the limitation induced by drought and N deficiency through improving the capacity of Rubisco carboxylation (Vmax) and decreasing SL. Plants with N deficiency transported more N to their leaves at elevated CO2, leading to a high photosynthetic nitrogen-use efficiency but low whole-plant nitrogen-use efficiency. The stress mitigation by elevated CO2 under N deficiency conditions was not enough to improving plant N use efficiency and biomass accumulation. The study demonstrated that elevated CO2 could alleviate drought-induced photosynthesis limitation, but the alleviation varied with N supplies. 展开更多
关键词 DROUGHT elevated co2 N deficiency PHOTOSYNTHESIS
在线阅读 下载PDF
Increased sink capacity enhances C and N assimilation under drought and elevated CO_2 conditions in maize 被引量:5
9
作者 ZONG Yu-zheng SHANGGUAN Zhou-ping 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第12期2775-2785,共11页
The maintenance of rapid growth under conditions of CO2 enrichment is directly related to the capacity of new leaves to use or store the additional assimilated carbon (C) and nitrogen (N). Under drought conditions... The maintenance of rapid growth under conditions of CO2 enrichment is directly related to the capacity of new leaves to use or store the additional assimilated carbon (C) and nitrogen (N). Under drought conditions, however, less is known about C and N transport in C4 plants and the contributions of these processes to new foliar growth. We measured the patterns of C and N accumulation in maize (Zea mays L.) seedlings using 13C and 15N as tracers in CO2 climate chambers (380 or 750 μmol mol-1) under a mild drought stress induced with 10% PEG-6000. The drought stress under ambient conditions decreased the biomass production of the maize plants; however, this effect was reduced under elevated CO2. Compared with the water-stressed maize plants under atmospheric CO2, the treatment that combined elevated CO2 with water stress increased the accumulation of biomass, partitioned more C and N to new leaves as well as enhanced the carbon resource in ageing leaves and the carbon pool in new leaves. However, the C counterflow capability of the roots decreased. The elevated CO2 increased the time needed for newly acquired N to be present in the roots and increased the proportion of new N in the leaves. The maize plants supported the development of new leaves at elevated CO2 by altering the transport and remobilization of C and N. Under drought conditions, the increased activity of new leaves in relation to the storage of C and N sustained the enhanced growth of these plants under elevated CO2. 展开更多
关键词 DROUGHT elevated co2 ALLOCATION carbon nitrogen
在线阅读 下载PDF
CO_2 absorption with ionic liquids at elevated temperatures 被引量:7
10
作者 Lu Bai Dawei Shang +3 位作者 Mengdie Li Zhongde Dai Liyuan Deng Xiangping Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第5期1001-1006,共6页
COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limit... COcapture with ionic liquids(ILs) has attracted many attentions, and most works focused on absorption ability at ambient temperatures, while seldom research was concerned at elevated temperatures.This not only limits the COabsorption application at elevated temperature, but also the determination of the operation condition of the COdesorption generally occurring at higher temperature. This work mainly reported COsolubilities in ILs at elevated temperatures and related properties were also provided. 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([CnMIm][TfN]) ILs were selected as physical absorbents for COcapture in this work due to their relative higher COabsorption capacities and good thermal stabilities. The long-term stability tests showed that [CnMIm][TfN] is thermally stable at 393.15 K for long time. COsolubilities in [CnMIm][TfN] were systematically determined at temperatures from 353.15 K to 393.15 K. It demonstrated that COsolubility obviously increases with the increase of pressure while slightly decreases with increase of temperature. As the length of alkyl chain on the cation increases, COsolubility in ILs increases. Additionally, the thermodynamic properties including the Gibbs free energy, enthalpy, and entropy of COwere also calculated. 展开更多
关键词 Ionic liquids co2 capture elevated temperature Pre-combustion
在线阅读 下载PDF
Effects of elevated CO_2 on sensitivity of six species of algae and interspecific competition of three species of algae 被引量:4
11
作者 YU Juan TANG Xue-xi +2 位作者 TIAN Ji-yuan ZHANG Pei-yu DONG Shuang-lin 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2006年第2期353-358,共6页
Effects of elevated CO, (5000 μl/L) on sensitivity comparison of six species of algae and interspecific competition of three species of algae were investigated. The results showed that, the cell densities of six sp... Effects of elevated CO, (5000 μl/L) on sensitivity comparison of six species of algae and interspecific competition of three species of algae were investigated. The results showed that, the cell densities of six species of algae grown in elevated CO2 significantly increased compared to those in ambient CO2 (360 μl/L), and with the time prolonged, the increasing extent increased. Therefore, elevated CO2 can promote the growth of six species of algae. However, there were differences in sensitivity between six species of algae. Based on the effects of elevated CO2 on biomass, the sensitive order (from high to low) was Platymanas sp., Platymanas subcordiformis, Nitzschia closterium, Isochrysis golbana Parke 8701, Dunoliella salina, Chlorella sp., on the condition of solitary cultivation. Compared to ambient CO2, elevated CO2 promoted the growth of three species of algae, Platymanas subcordiformis, Nitzschia closterium and Isochrysis galbana Parke 8701 under the condition of mixed cultivation. The sensitivity of the three species to elevated CO2 in mixed cultivation changed a lot compared to the condition of solitary cultivation. When grown in elevated CO2 under the condition of mixed cultivation, the sensitive order from high to low were Nitzschia clostertium, Platymonas subcordiformis; and Isochrysis galbana Parke 8701. However, under the condition of solitary cultivation, the sensitive order in elevated CO2 was Isochrysis galbana Parke 8701, Nitzschia clostertium, Platymonas subcordiformis, from sensitive to less sensitive. On the day 21, the dominant algae, the sub-dominant algae and inferior algae grown in elevated CO2 did not change. However, the population increasing dynamic and composition proportion of three algal species have significantly changed. 展开更多
关键词 elevated co2 MICROALGAE sensitivity interspecific competition
在线阅读 下载PDF
Elevated CO_(2)-conferred sodium homeostasis is linked to abscisic acid-mediated stomatal closure and signalling pathway in tomato
12
作者 Kehao Liang Yiting Chen +1 位作者 Jingxiang Hou Fulai Liu 《Horticultural Plant Journal》 2025年第3期1218-1230,共13页
Soil salinity hampers plant performance.Elevated atmospheric CO_(2)(e[CO_(2)])could alleviate the detrimental effect of salinity on plants but whether abscisic acid(ABA)is involved in this process is unclear.To addres... Soil salinity hampers plant performance.Elevated atmospheric CO_(2)(e[CO_(2)])could alleviate the detrimental effect of salinity on plants but whether abscisic acid(ABA)is involved in this process is unclear.To address this issue,three tomato(Solanum lycopersicum)genotypes with varying endogenous ABA concentrations(wild-type AC,ABA-deficient mutant flacca and ABA-overproduction line SP5)were grown in pots under ambient(400μmol·mol^(-1))or elevated(800μmol·mol^(-1))CO_(2)with or without the addition of 100 mmol·L-1sodium chloride(NaCl).The results showed that e[CO_(2)]favored ion homeostasis by decreasing root-to-shoot delivery of Na^(+),which was mainly attributed to lowered transpiration rate rather than altered xylem-sap Na^(+)concentration.In AC and SP5,the low transpiration rate of e[CO_(2)]-plants under salinity was accompanied by enhanced endogenous ABA levels,which might play a role in upregulating the abundance of specific transcripts related to Na^(+)homeostasis(i.e.,SALT OVERLY SENSITIVE)under salt stress.In flacca,e[CO_(2)]-induced Na^(+)homeostasis was abolished,which could be ascribed to the low and unaltered ABA levels,albeit the ethylene biosynthesis was enhanced in flacca under salt stress,indicating an antagonistic relationship between ABA and ethylene.Furthermore,e[CO_(2)]inhibited ethylene biosynthesis under salt stress in all three genotypes.The results enrich our comprehension of the fundamental processes of e[CO_(2)]-conferred salt tolerance in tomato. 展开更多
关键词 ABA elevated CO_(2) ETHYLENE Na^(+)homeostasis Soil salinity SOS pathway TOMATO
在线阅读 下载PDF
Response of successive three generations of cotton,bollworm,Helicoverpa armigera (Hübner),fed on cotton bolls under elevated CO_2 被引量:5
13
作者 WU Gang CHEN Fa-jun +1 位作者 SUN Yu-cheng GE Feng 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第11期1318-1325,共8页
The growth, development and consumption of successive three generations of cotton bollworm, Helicoverpa armigera (Htibner), fed on cotton bolls grown under elevated CO2 (double-ambient vs. ambient) in open-top cha... The growth, development and consumption of successive three generations of cotton bollworm, Helicoverpa armigera (Htibner), fed on cotton bolls grown under elevated CO2 (double-ambient vs. ambient) in open-top chambers were examined. Significant decreases in protein, total amino acid, water and nitrogen content and increases in free fatty acid were observed in cotton bolls. Changes in quality of cotton bolls affected the growth, development and food utilization of H. armigera. Significantly longer larval development duration in three successive generations and lower pupal weight of the second and third generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower fecundity was also found in successive three generations of H. armigera fed on cotton bolls grown under elevated CO2. The consumption per larva occurred significant increase in successive three generations and frass per larva were also significantly increased during the second and third generations under elevated CO2. Significantly lower relative growth rate, efficiency of conversion of ingested food and significant higher relative consumption rate in successive three generations were observed in cotton bollworm fed on cotton bolls grown under elevated CO2. Significantly lower potential female fecundity, larval numbers and population consumption were found in the second and third generations of cotton bollworm fed on cotton bolls grown under elevated CO2. The integrative effect of higher larval mortality rate and lower adult fecundity resulted in significant decreases in potential population consumption in the latter two generations. The results show that elevated CO2 adversely affects cotton bolls quality, which indicates the potential population dynamics and potential population consumption of cotton bollworm will alleviate the harm to the plants in the future rising CO2 atmosphere. 展开更多
关键词 elevated co2 Helicoverpa armigera growth development FECUNDITY cotton bolls population consumption successive generation
在线阅读 下载PDF
Interactive Effects of Elevated CO_2 and Temperature on Rice Planthopper, Nilaparvata lugens 被引量:3
14
作者 SHI Bao-kun HUANG Jian-li +1 位作者 HU Chao-xing HOU Mao-lin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第7期1520-1529,共10页
It is predicted that the current atmospheric CO2 concentration will be doubled and global mean temperature will increase by 1.5-6&#176;C by the end of this century. Although a number of studies have addressed the sep... It is predicted that the current atmospheric CO2 concentration will be doubled and global mean temperature will increase by 1.5-6&#176;C by the end of this century. Although a number of studies have addressed the separate effects of CO2 and temperature on plant-insect interactions, few have concerned with their combined impacts. In the current study, a factorial experiment was carried out to examine the effect of a doubling CO2 concentration and a 3℃ temperature increase on a complete generation of the brown planthopper (Nilaparvata lugens) on rice (Oryza sativa). Both elevated CO2 and temperature increased rice stem height and biomass of stem parts. Leaf chlorophyll content increased under elevated CO2, but only in ambient temperature treatment. Water content of stem parts was reduced under elevated temperature, but only when coupled with elevated CO2. Elevated CO2 alone increased biomass of root and elevated temperature alone enhanced leaf area and reduced ratio of root to stem parts. Brown planthopper (BPH) nymphal development was accelerated, and weight of and honeydew excretion by the F1 adults was reduced under elevated temperature only. Longevity of brachypterous females was affected by a signiifcant interaction between CO2 and temperature. At elevated temperature, CO2 had no effect on female longevity, but at ambient temperature, the females lived shorter under elevated CO2. Female fecundity was higher at elevated than at ambient temperature and higher at elevated CO2 than at ambient CO2. These results indicate that the combined effects of elevated temperature and CO2 may enhance the brown planthopper population size. 展开更多
关键词 climate change elevated co2 global warming Nilaparvata lugens RICE development
在线阅读 下载PDF
Effects of elevated CO_2 levels on root morphological traits and Cd uptakes of two Lolium species under Cd stress 被引量:4
15
作者 Yan JIA Shi-rong TANG +4 位作者 Xue-hai JU Li-na SHU Shu-xing TU Ren-wei FENG Lorenzino GIUSTI 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2011年第4期313-325,共13页
This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam.and Lolium perenne L.exposed to two C... This study was conducted to investigate the combined effects of elevated CO2 levels and cadmium (Cd) on the root morphological traits and Cd accumulation in Lolium multiflorum Lam.and Lolium perenne L.exposed to two CO2 levels (360 and 1000 μl/L) and three Cd levels (0,4,and 16 mg/L) under hydroponic conditions.The results show that elevated levels of CO2 increased shoot biomass more,compared to root biomass,but decreased Cd concentrations in all plant tissues.Cd exposure caused toxicity to both Lolium species,as shown by the restrictions of the root morphological parameters including root length,surface area,volume,and tip numbers.These parameters were significantly higher under elevated levels of CO2 than under ambient CO2,especially for the number of fine roots.The increases in magnitudes of those parameters triggered by elevated levels of CO2 under Cd stress were more than those under non-Cd stress,suggesting an ameliorated Cd stress under elevated levels of CO2.The total Cd uptake per pot,calculated on the basis of biomass,was significantly greater under elevated levels of CO2 than under ambient CO2.Ameliorated Cd toxicity,decreased Cd concentration,and altered root morphological traits in both Lolium species under elevated levels of CO2 may have implications in food safety and phytoremediation. 展开更多
关键词 elevated co2 levels Lofium multiflorum Lam. Lolium perenne L. Root morphology Cd uptake Cd stress
原文传递
Elevated CO_2 changes the moderate shade tolerance of yellow birch seedlings 被引量:2
16
作者 CHENG Song 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第4期502-507,共6页
To demonstrate the existence of light thresholds in plant growth and to examine the effects of elevated CO2 on the shade tolerance of a tree species, an experiment consisting of a completely randomized design for a to... To demonstrate the existence of light thresholds in plant growth and to examine the effects of elevated CO2 on the shade tolerance of a tree species, an experiment consisting of a completely randomized design for a total of 96 yellow birch (Betula alleghaniensis Britton) seedlings was conducted with 3 light levels (2.9%, 7.7%, 26.1% of full sunlight) × 2 CO2 levels (350 and 700±10 ppm) with 4 replications in a phytotron. The study proved that thresholds exist and they vary in different plant organs. In ambient CO2, the thresholds were 13.3%, 18.7%, 15.0%, 15.2%, and 15.6% of full sunlight for stem, leaf, root, total plant biomass, and the averaged value, respectively. In 700 ppm CO2, the corresponding thresholds were 16.7%, 21.3%, 18.1%, 21.7% and 19.5% for stem, leaf, root, total plant biomass, and the averaged value, respectively. The lowest threshold in the stem is an indicator of the minimal light intensity for regular growth for seedlings of this species. Below this threshold, light-stressful growth occurs. The result of a paired t-test indicated that the thresholds in elevated CO2 were significantly higher than in ambient CO2. This suggests that yellow birch will lose its moderate shade tolerance, evolutionally becoming a shade-intolerant species, and that it may become more difficult to naturally regenerate in the future. 展开更多
关键词 elevated co2 light threshold PHYTOTRON plant biomass yellow birch
在线阅读 下载PDF
Combined effects of elevated temperature and CO_2 concentration on Cd and Zn accumulation dynamics in Triticum aestivum L. 被引量:6
17
作者 Xiaoheng Wang Yu Li +1 位作者 Hong Lu Shigong Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第9期109-119,共11页
A simulated climate warming experiment was conducted to evaluate the combined effects of elevated temperature and CO_2 concentration on the bioaccumulation,translocation and subcellular distributions of Cd and Zn in w... A simulated climate warming experiment was conducted to evaluate the combined effects of elevated temperature and CO_2 concentration on the bioaccumulation,translocation and subcellular distributions of Cd and Zn in wheat seedlings(Triticum aestivum L.cv.Xihan 1.) at Dingxi,Gansu Province,China.The objective was to find evidence that global climate change is affecting the bioaccumulation of Cd and Zn in T.aestivum L.cv.Xihan 1.The results showed that compared to control A,elevated temperature and CO_2 increased Cd bioaccumulation in the shoots by 1.4–2.5 times,and increased that in the roots by 1.2–1.5times,but decreased Zn levels in wheat shoots by 1.4–2.0 times,while decreased that in the roots by 1.6–1.9 times.Moreover,temperature and CO_2 concentration increase also led to increased Cd concentration,and decreased Zn concentration in subcellular compartments of wheat seedlings.The largest Cd concentration increase(174.4%) was observed in the cell wall and debris fractions of shoots after they were subjected to the highest CO_2 and temperature treatment(TC3).The largest Zn concentration decrease(53.1%) was observed in the soluble(F3) fractions of shoots after they were subjected to the medium CO_2 and temperature treatment(TC2).The temperature and CO_2 increase had no significant effect on the proportional distribution of Cd and Zn in the subcellular fractions.The root-to-shoot translocation of Cd increased with the increasing temperature and CO_2 concentration.However,the Zn distributions only fluctuated within a small range. 展开更多
关键词 Climate warming elevated CO_2 elevated temperature Trace elements Wheat
原文传递
Soil and Root Respiration Under Elevated CO_2 Concentrations During Seedling Growth of Pinus sylvestris var.sylvestriformis 被引量:6
18
作者 LIU Ying HAN Shi-Jie +1 位作者 ZHOU Yu-Mei LI Xue-Feng 《Pedosphere》 SCIE CAS CSCD 2007年第5期660-665,共6页
The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil resp... The objectives of this study were to investigate the effect of higher CO2 concentrations (500 and 700 μmol mol^-1) in atmosphere on total soil respiration and the contribution of root respiration to total soil respiration during seedling growth of Pinus sylvestris vat. sylvestriformis. During the four growing seasons (May-October) from 1999 to 2003, the seedlings were exposed to elevated concentrations of CO2 in open-top chambers. The total soil respiration and contribution of root respiration were measured using an LI-6400-09 soil CO2 flux chamber on June 15 and October 8, 2003. To separate root respiration from total soil respiration, three PVC cylinders were inserted approximately 30 cm deep into the soil in each chamber. There were marked diurnal changes in air and soil temperatures on June 15. Both the total soil respiration and the soil respiration without roots showed a strong diurnal pattern, increasing from before sunrise to about 14:00 in the afternoon and then decreasing before the next sunrise. No increase in the mean total soil respiration and mean soil respiration with roots severed was observed under the elevated CO2 treatments on June 15, 2003, as compared to the open field and control chamber with ambient CO2. However, on October 8, 2003, the total soil respiration and soil respiration with roots severed in the open field were lower than those in the control and elevated CO2 chambers. The mean contribution of root respiration measured on June 15, 2003, ranged from 8.3% to 30.5% and on October 8, 2003, from 20.6% to 48.6%. 展开更多
关键词 contribution of root respiration elevated co2 concentration total soil respiration
在线阅读 下载PDF
Effects of elevated CO_2 on net photosynthetic rate of trees in Changbai Mountain 被引量:1
19
作者 王琛瑞 韩士杰 《Journal of Forestry Research》 SCIE CAS CSCD 1999年第4期211-213,共3页
Net photosynthetic rates (NPRs) of four species seedlings, Pinus koraiensis, Ptrius Syvestriformis,Fraxinus mandshuthe and Phellodendron amurense, were measured at different CO2 concentrations and time respectively in... Net photosynthetic rates (NPRs) of four species seedlings, Pinus koraiensis, Ptrius Syvestriformis,Fraxinus mandshuthe and Phellodendron amurense, were measured at different CO2 concentrations and time respectively in Changbai Mountain during the growing season in 1999. The seedlings were cultivated in open-top chambers (OTCs), located outdoors and exposed to natural sunlight. The experimental objects were divided into four groups by tree species. CO2 concentrations in chambers were kept at 500 μL-L-1 and 700 μL-L-1 and contrast chamber and contrast field were set. The results showed that the effects of elevated CO2 on NPR of the trees strongly depended on tree species and time. NPRs of Pin us koreaipsis and Pinus syvestriformis seedfings increased with the rising of CO2 concentration, while that of Phellodron amurense and haus mandshurica increased at some time and decreased at another time. 展开更多
关键词 elevated CO_2 Net photosynthetic rate Trees Changbai Mountain
在线阅读 下载PDF
Growth response of three plantation species of the tropics exposed to elevated CO_2 levels 被引量:1
20
作者 Rekha R. Warrier C. Buvaneswaran +1 位作者 P. Priyadharshini R.S.C. Jayaraj 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第3期449-456,共8页
The response of forest trees, the largest carbon sinks on the earth, to continuing rise in atmospheric carbon levels is unknown. Re- ports state that increasing levels of atmospheric CO2 will stimulate pho- tosynthesi... The response of forest trees, the largest carbon sinks on the earth, to continuing rise in atmospheric carbon levels is unknown. Re- ports state that increasing levels of atmospheric CO2 will stimulate pho- tosynthesis and productivity in most ecosystems. However, the duration and magnitude of this stimulation, particularly in the tropics, remains a question. To investigate the effects of CO2 fertilization on plant growth, seedlings of three common plantation species, Casuarina equisetifolia, Ailanthus excelsa and Tectona grandis were grown in closed chambers enriched with CO2. After 180 days of treatment, morphological traits of seedling height, biomass of root and shoot and root-shoot allometric co-efficient were measured. The activity of carbonic anhydrase and con- tents of chlorophylls, total carbohydrates and soluble proteins were de- termined. In Tectona grandis, significant effects of CO2 supply were found on chlorophylls, root-shoot allometric ratio and seedling quality index. Ailanthus excelsa showed significant effect on only the shoot characteristics on exposure to elevated CO2 but the root characteristics and concentrations of chlorophylls were not significantly different. Ca- suarina equisetifolia also showed significant effects on exposure to ele- vated CO2 in terms of shoot characteristics and concentrations of chlo- rophylls. Total sugars, the major photosynthates, did not show any sig- nificant variation to elevated CO2 in any of the three species. Carbonic anhydrase, the key enzyme responsible for transfer of CO2 into the tis- sues significantly increased in all three species. Overall, all the variables responded to elevated CO2, reflecting the positive effects of one parame- ter of climate change conditions on seedling quality. A positive response of these three plantation species to elevated CO2 content is a good indi- cation for their future existence in potentially changed climatic eonditions. 展开更多
关键词 PLANTATION elevated co2 Tropical trees INDIA Carbonicanhydrase
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部