On the stone-paved lanes of Songyang County that date back to ancient times,morning mist lingered as a faint fragrance of tea wafted from a century-old house.Inside,Yang Junjie,a tea maker born in the 1980s,worked def...On the stone-paved lanes of Songyang County that date back to ancient times,morning mist lingered as a faint fragrance of tea wafted from a century-old house.Inside,Yang Junjie,a tea maker born in the 1980s,worked deftly at the stove,his hands moving swiftly over the scorching iron wok as tender green tea leaves dance between his fingers.展开更多
The presence of inorganic constituents in coal is controlled by different geological factors,which,in turn,affect the technological,environmental,and health impacts of the coal.The main aim of this study is to objecti...The presence of inorganic constituents in coal is controlled by different geological factors,which,in turn,affect the technological,environmental,and health impacts of the coal.The main aim of this study is to objectively assess the mineralogical and geochemical characteristics of a thickest low-rank coal seam in the Lower Indus Basin southeastern Pakistan,and further investigate different controlling factors.The analytical results of major oxides,trace elements,and rare earth elements revealed that the weathering conditions were progressively variable and moderate.The sediment source,mainly of felsic and intermediate composition,was dominated by granitic rocks.The geochemical assessment reveals different depositional factors like marine environment influenced,while transitional and freshwater sediments influenced the center of the coal peat mire.Strontium,Zinc,and several hazardous trace elements,including Cu,Ni,Cr,and Co,have higher concentrations in these coals compared to world low-rank,U.S.,and Chinese coals.The relatively higher concentration of Sr in the thick coal seam in the Lower Indus Basin,compared to other coals seams in Pakistan and the enrichment of Sr was primarily controlled by the denudation of crystalline rocks and marine influx in the coal-basin.The REY distribution pattern showed that enrichment of medium and heavy rare earth elements is higher than light rare earth elements in the coal seam.The Gd distribution pattern in the coal seam demonstrated that strong positive anomalies had a good affinity with paleo-acidic water concentration in the study area.The higher concentration of Sr and other elements enables a better assessment understanding of the coal geochemical history.展开更多
Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However...Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.展开更多
Under the starry night,a fashion extravaganza was staged in Lhasa.The Fashion Night is a local fashion show in Xizang combining tradition and innovation as well as modernity and international flavor.By providing them ...Under the starry night,a fashion extravaganza was staged in Lhasa.The Fashion Night is a local fashion show in Xizang combining tradition and innovation as well as modernity and international flavor.By providing them with opportunities to present their art works to more audiences,it built a platform for young Tibetan designers for their careers to take root and blossom on the plateau.It is also aimed to bring more people to pay attention to the fashion culture of Xizang,and infuse new vitality into the development of local fashion industry.展开更多
In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain th...In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain the contents of rare earth elements(REE)to explore the degree of preservation of paleo-seawater information by carbonate components and elucidate the provenance relationship between the QDNB and the Yinggehai Basin and the provenance changes in the deep-water area of the QDNB since the Oligocene.The main achievements of this paper are as follows:(1)In the process of extracting the autogenic carbonate,the iron-manganese oxide envelope on the surface of the sediment particles(which can adsorb REE or its complexes in seawater)will partially dissolve into the autogenic carbonate components,thus covering the REE geochem-ical information of paleo-seawater carried by the auto-genic carbonate.Therefore,caution should be exercised when using the geochemical characteristics of REE in the carbonate component of impure carbonate rocks to reflect the sedimentary paleoenvironment.(2)The analysis of the REE geochemical characteristics of multiple cores in the Ying-gehai-QDNB shows that there is a close provenance rela-tionship between the two Basins.The sediments in the central depression area of the Yinggehai Basin and the deep-water area in the western part of the QDNB generally contain more feldspar(Eu-rich)minerals.Since the Eocene,paleo-rivers have carried ultramafic-mafic materials originating from the western South China Sea into the sea.Affected by the transport distance and sea level changes,the content of feldspar(Eu-rich)minerals in the sediments of the QDNB from west to east gradually decreased.展开更多
Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most e...Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most effective strategies for addressing these issues.However,typical residual elements(Cu,As,Sn,Sb,Bi,etc.)inherited from scrap could significantly influence the mechanical properties of steel.In this work,we investigate the effects of residual elements on the microstructure evolution and mechanical properties of a quenching and partitioning(Q&P)steel by comparing a commercial QP1180 steel(referred to as QP)to the one containing typical residual elements(Cu+As+Sn+Sb+Bi<0.3wt%)(referred to as QP-R).The results demonstrate that in comparison with the QP steel,the residual elements significantly refine the prior austenite grain(9.7μm vs.14.6μm)due to their strong solute drag effect,leading to a higher volume fraction(13.0%vs.11.8%),a smaller size(473 nm vs.790 nm)and a higher average carbon content(1.26 wt%vs.0.99 wt%)of retained austenite in the QP-R steel.As a result,the QP-R steel exhibits a sustained transformation-induced plasticity(TRIP)effect,leading to an enhanced strain hardening effect and a simultaneous improvement of strength and ductility.Grain boundary segregation of residual elements was not observed at prior austenite grain boundaries in the QP-R steel,primarily due to continuous interface migration during austenitization.This study demonstrates that the residual elements with concentrations comparable to that in scrap result in significant microstructural refinement,causing retained austenite with relatively higher stability and thus offering promising mechanical properties and potential applications.展开更多
The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This pap...The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This paper aims to reveal the impact mechanism of the data elements on the“three transformations”(high-end,intelligent,and green)in the manufacturing sector,theoretically elucidating the intrinsic mechanisms by which the data elements influence these transformations.The study finds that the data elements significantly enhance the high-end,intelligent,and green levels of China's manufacturing industry.In terms of the pathways of impact,the data elements primarily influence the development of high-tech industries and overall green technological innovation,thereby affecting the high-end,intelligent,and green transformation of the industry.展开更多
As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and oper...As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].展开更多
In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings...In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings are clean.Furthermore,we prove pseudo clean rings are directly finite and have stable range one.展开更多
[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and ...[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and subsequently digested using the Multiwave 7000 super microwave digestion system.The contents of aluminum(Al),barium(Ba),beryllium(Be),cobalt(Co),chromium(Cr),iron(Fe),gallium(Ga),magnesium(Mg),manganese(Mn),nickel(Ni),antimony(Sb),tin(Sn),strontium(Sr),titanium(Ti),thallium(Tl),vanadium(V),and zinc(Zn)were quantified utilizing a PerkinElmer 2000 inductively coupled plasma mass spectrometer.Principal component analysis was performed utilizing SPSS 25.0 to identify the distinctive characteristic elements of A.membranaceus.Additionally,systematic cluster analysis was conducted using these characteristic elements as variables to investigate the relationship between the primary inorganic elements and the geographical origin of A.membranaceus.[Results]17 inorganic elements were identified in A.membranaceus specimens collected from Gansu Province,with characteristic elements including Ba,Co,Fe,Ga,Mn,Zn,and Sn.The contents of inorganic elements in various sources of A.membranaceus exhibited significant variability and demonstrated distinct clustering characteristics.[Conclusions]A.membranaceus,originating from Gansu Province,exhibits a high content of inorganic elements.However,variations in ecological environments can lead to differences in the specific inorganic elements that are enriched.This study aims to provide a reference for the further development and application of A.membranaceus.展开更多
This review provides a comprehensive summary of biomass-based adsorption,with a particular focus on biochar as an innovative,sustainable,and eco-friendly technique for recovering rare earth elements(REEs) from various...This review provides a comprehensive summary of biomass-based adsorption,with a particular focus on biochar as an innovative,sustainable,and eco-friendly technique for recovering rare earth elements(REEs) from various sources.This study details primary adsorption mechanisms,including physical adsorption,ion exchange,electrostatic attraction,surface complexation,and precipitation,providing a nuanced understanding of how these processes contribute to metal recovery.Additionally,it discusses various biochar modification methods aimed at enhancing surface functionalities,thereby improving adsorption capacity and selectivity.It further addresses the critical challenge of biochar regeneration,outlining methods such as thermal,solvent,microwave irradiation,and supercritical fluid regeneration to sustain biochar's efficacy over multiple cycles.Overall,this comprehensive analysis highlights biochar's versatility and potential in environmental remediation and resource recovery,emphasizing the importance of optimized regeneration techniques to maintain its adsorption efficiency and future research directions for large-scale applications.展开更多
This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples w...This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.展开更多
Rare earth elements(REEs),with their unique magnetic,optical,and electrical properties,have become indispensable strategic resources.Widely applied in critical fields such as aviation,telecommunications,electronics,en...Rare earth elements(REEs),with their unique magnetic,optical,and electrical properties,have become indispensable strategic resources.Widely applied in critical fields such as aviation,telecommunications,electronics,energy,transportation,and medicine,REEs play a vital role in advancing technology and driving social and economic development.However,the REE industry faces numerous challenges,including unbalanced resource distribution,supply and demand imbalances,international competition,technological limitations,and associated environmental pollution.This paper,incorporating both the historical evolution and current state of the REE industry,provides a comprehensive examination of the chemistry,applications,resources,technologies,challenges,and prospects of REEs.Specifically,it analyzes China's REE industry,which holds the largest global reserves and production capacity.As a key feature,this paper introduces the Tai Chi model for sustainable development in the REE industry,offering an in-depth analysis of two primary approaches—mining and recycling;the four critical participants—governments,enterprises,researchers,and consumers;and the eight essential influencing factors—resources,energy,environment,policy,applications,technology,supply and demand,and economy.The Tai Chi model not only clarifies the responsibilities and significance of each individual but also highlights their interconnectedness,providing a compelling framework for envisioning the sustainable development of the REE industry.Moreover,the paper identifies the major challenges currently facing the industry and offers insights into the future development of REEs.As such,this work contributes to a deeper understanding of the multifaceted REE landscape and underscores the importance of sustainable practices to ensure REEs'lasting positive impact on the global industry.展开更多
Rare earth elements(REEs)play a crucial role in many technologies from daily appliances in cell phones to more advanced wind turbines and electric cars.Permanent magnets account for a quarter of total global REEs prod...Rare earth elements(REEs)play a crucial role in many technologies from daily appliances in cell phones to more advanced wind turbines and electric cars.Permanent magnets account for a quarter of total global REEs production and have high recycling value.In this study,smelting process was used to selectively oxidize REEs in the permanent magnets by adding Fe_(2)O_(3).This separates REEs into a slag phase from an iron-rich metallic phase.B_(2)O_(3) was also added to the system as a flux to lower the slag melting temperature.This minimizes REEs loss to the metallic phase and allows a more efficient phase separation.The effect of flux and oxidizing agent addition was investigated on both regular and cerium-rich NdFeB(NdCeFeB)magnets.At 1350℃and for 1 h,the slag phase was successfully separated from the metallic phase with the addition of 0.8 stoichiometric amount of Fe_(2)O_(3) and 40 wt%of B_(2)O_(3).Scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX)analysis reveals that REEs in the magnet do not migrate to the metal phase while the REE-rich slag phase contains almost no iron.After the selective removal of iron into the metallic phase,REEs are recovered from the slag phase through an acid leaching process allowing>99%of REEs recovery.Boron in the magnet can also be recovered as useful boric acid by evaporation and crystallisation technique.The proposed process in this study is reagent and energy-efficient with almost complete valorisation of both NdCeFeB and NdFeB magnets.展开更多
With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite...With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite(Jar)and schwertmannite(Sch)were biosynthesized using Acidithiobacillus ferrooxidans for the adsorption of REEs.Additionally,the adsorption capacities of Jar and Sch for La^(3+),Ce^(3+),Pr^(3+),Nd^(3+),Sm^(3+),Gd^(3+),Dy^(3+),and Y^(3+)in mine wastewater were improved by mechanical activation.XRD,FTIR,BET,and SEM-EDS analyses revealed that mechanical activation did not alter the phase of the material,but increased the amount of surface-OH and SO42−groups,as well as the specific surface area.This significantly enhanced the adsorption performance of Jar and Sch for REEs.The optimum adsorption time and pH were determined through batch adsorption experiments.Besides,the adsorption kinetics were studied and found to align well with the pseudo-second-order model.Furthermore,the thermodynamic parameters(ΔG^(Θ),ΔH^(Θ)andΔS^(Θ))and adsorption isotherms were analyzed.The results indicated that mechanically activated schwertmannite(M-Sch)exhibited superior adsorption performance for REEs compared to mechanically activated jarosite(M-Jar).Moreover,M-Sch was reusable and exhibited high adsorption efficiency of REEs in actual mine wastewater,exceeding 92%.展开更多
Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,h...Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,however,studies on its complex magmatic-hydrothermal evolution are limited.This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence(CL)textures and laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of quartz.Five types quartz(Q1 to Q5)were identified.From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins,the CL intensity and Ti content gradually decreases,and Ge,Ge/Ti,and Al/Ti ratios increase,indicating a temperature decline from magmatic to hydrothermal stages.The Sb content shows an opposite trend to Ti content,correlating positively with Ge content in quartz,suggesting that Sb content could also be temperature-dependent.These trace elements in quartz indicate cooling is critical for Ag mineralization.Furthermore,quartz phenocryst(Q1)from the quartz porphyry shows low Al/Ti(mostly<4)and Ge/Ti ratios(<0.04),suggesting a low degree of magmatic evolution.The Sb content in Q5 from Ag-Pb-Zn-quartz veins(>1 ppm,mostly tens of ppm)is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins(<1 ppm),suggesting that Sb contents can serve as an effective indicator of Ag mineralization.展开更多
This article addresses the question of how the global and U.S.market sector allocations for rare earth elements compare.Accordingly,this article reports rare earth oxide(REO)market sector allocations,resolved by eleme...This article addresses the question of how the global and U.S.market sector allocations for rare earth elements compare.Accordingly,this article reports rare earth oxide(REO)market sector allocations,resolved by elemental profile for 2020 and reciprocally REO consumption resolved by end market use.Differences are calculated relative to 2008 and presented as percentages and as absolute tonnage.These differences encompass both changes in relative sector demand and growth rate.Historical trends,global and U.S.for REO usage by sector are calculated for the period of 2018-2022.End market sector demands,as percentages are presented,referenced to United States Geological Survey(USGS)values from 2008.Attention is given to permanent magnets and associated elements given the growing renewable generation and vehicle electrification.The criticality of Nd and Dy are considered given that they are the foundation of NdFeB permanent magnets,prominent in electric vehicle traction motors and direct drive wind turbine generators.Economic activity associated with REE market sectors is presented.Notably usage does not reflect economic value.A prime example are catalysts versus magnets.Last,vast reserves of light and heavy REEs exist in coal and coal-byproducts with potential high impact upon critical REEs and associated economics.展开更多
Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge ...Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge the gap between supply and demand.In this concern,a new material called Si-6G PAMAMPPAAM dendrimers modified silica gel terminated with phenylphosphonic acid-amide moieties was developed and its ability to adsorb Nd(Ⅲ)and Er(Ⅲ)from the phosphoric acid solution was investigated.K inetics and isotherm of the uptake process were investigated to explo re the so rption characte ristics.The attained results show that both metal ions exhibit the same adsorption performance,and the uptake process is depicted as a chemisorption,monolayer,uniform,and homogeneous process.The equilibrium state is achieved within 120 min,and the maximum uptake capacity is 16.7 mg Nd(Ⅲ)/g,and 14.0 mg Er(Ⅲ)/g.Sorption thermodynamics is an endothermic,spontaneous,and feasible uptake process.Nitric acid(1.0 mol/L)is found to be efficient for adsorbing about 94.3%and 92.5%of neodymium(Ⅲ)and erbium(Ⅲ)respectively,and the prepared Si-6G PAMAM-PPAAM demonstrates excellent stability over five consecutive sorption/desorption cycles.Preliminary tests on commercial phosphoric acid demonstrate that Si-6G PAMAM-PPAAM retains its effective REEs uptake from a complex comm ercial phosph oric acid solution.展开更多
In this study,a pristine biochar(BCP)from dead Posidonia oceanica leaves,a by-product of biofuel production,and its two chemically activated forms with KOH(BBCP)and with H_(3)PO_(4)(ABCP)were tested as new adsorbent m...In this study,a pristine biochar(BCP)from dead Posidonia oceanica leaves,a by-product of biofuel production,and its two chemically activated forms with KOH(BBCP)and with H_(3)PO_(4)(ABCP)were tested as new adsorbent materials for the recovery of three rare earth cations(REE),namely La^(3+),Dy^(3+)and Nd^(3+)from aqueous solutions.The biochars were characterized through elemental analysis,nitrogen adsorption-desorption analysis,attenuated total reflectance-Fourier transform infrared(ATR-FT-IR)spectroscopy,scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM-EDX),and pHpzcmeasurements.From single batch adsorption experiments at different pH values,the pH=5.0 was chosen as the best pH value for kinetic and isotherm adsorption studies.The effect of ionic medium on the adsorption ability of the best REE adsorbent ABCP was also evaluated by carrying out isotherm experiments in 0.1 mol/L NaNO3.Inductively coupled plasma optical emission spectroscopy(ICP-OES)was used to evaluate the REE concentration in the solutions.Kinetic and isotherm data of REE adsorption were tentatively subjected to regression analysis with various kinetic and isotherm equations.The parameter values of the best fit models and characterization results were analyzed to obtain information about the adsorption mechanism.The recyclability of ABCP adsorbent was also evaluated through recycle and reuse column experiments in which 0.1 mol/L HNO3and EDTA were used as extractant solutions.The chemical activation processes enhance the adsorption capacity of BCP by increasing the carbonization,the specific and microporous surface area,the pore volume and,in the case of activation with H_(3)PO_(4),introducing phosphate groups in the biochar structure.The promising REE recovery results obtained with ABCP transform the biochar from a by-product to a high value-added material.This contributes to making biofuel production a more cost-effective and environmentally-friendly process.展开更多
The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we pe...The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we performed an exchange reaction between magnesium halides(fluoride and chloride) and waste NdFeB scrap and then compared the characteristics of the extracted halides salts.The compositions of the ternary Mg fluoride(LiF:NaF:MgF_(2)=50:40:10 in mole ratio) and chloride(LiCl:NaCl:MgCl_(2)=10:50:40 in mole ratio) salts were thermodynamically determined for achieving low eutectic temperatures.The reactions between the NdFeB scrap powder(1-2 mm) and Mg halide salts were carried out at 1073 and 873 K for the fluoride and chloride systems,respectively,in an argon atmosphere.After the reaction,we separated Nd halide from the residual salt and evaluated the Ndextraction rate.The phase formation of the salt was analyzed using X-ray diffraction(XRD),and the extraction rate of Nd was analyzed using inductively coupled plasma optical emission spectroscopy(ICPOES).Nd was extracted in the form of Nd halide(NdF_(3) or NdCl_(3)),and the extraction rates in the fluoride and chloride systems are 98.64% and 84.59%,respectively.Thus,the fluoride system is more effective than the chloride system for Nd extraction.Our study provides a comprehensive comparative analysis of the effectiveness of fluo ride and chlo ride systems in extracting REEs from NdFeB magnet scrap.Our study findings can be used to develop an effective method for recycling magnet scraps.展开更多
文摘On the stone-paved lanes of Songyang County that date back to ancient times,morning mist lingered as a faint fragrance of tea wafted from a century-old house.Inside,Yang Junjie,a tea maker born in the 1980s,worked deftly at the stove,his hands moving swiftly over the scorching iron wok as tender green tea leaves dance between his fingers.
基金supported by the National Natural Science Foundation of China,funding numbers 41690131,41572327,51874280 and 5264015.
文摘The presence of inorganic constituents in coal is controlled by different geological factors,which,in turn,affect the technological,environmental,and health impacts of the coal.The main aim of this study is to objectively assess the mineralogical and geochemical characteristics of a thickest low-rank coal seam in the Lower Indus Basin southeastern Pakistan,and further investigate different controlling factors.The analytical results of major oxides,trace elements,and rare earth elements revealed that the weathering conditions were progressively variable and moderate.The sediment source,mainly of felsic and intermediate composition,was dominated by granitic rocks.The geochemical assessment reveals different depositional factors like marine environment influenced,while transitional and freshwater sediments influenced the center of the coal peat mire.Strontium,Zinc,and several hazardous trace elements,including Cu,Ni,Cr,and Co,have higher concentrations in these coals compared to world low-rank,U.S.,and Chinese coals.The relatively higher concentration of Sr in the thick coal seam in the Lower Indus Basin,compared to other coals seams in Pakistan and the enrichment of Sr was primarily controlled by the denudation of crystalline rocks and marine influx in the coal-basin.The REY distribution pattern showed that enrichment of medium and heavy rare earth elements is higher than light rare earth elements in the coal seam.The Gd distribution pattern in the coal seam demonstrated that strong positive anomalies had a good affinity with paleo-acidic water concentration in the study area.The higher concentration of Sr and other elements enables a better assessment understanding of the coal geochemical history.
基金supports from the National Key Research and Development Program of China(2023YFB2806803)the National Natural Science Foundation of China(62075127).
文摘Liquid crystal Pacharatnam-Berry phase optical elements(PBOEs)have found promising applications in augmented reality and virtual reality because of their slim formfactor,lightweight,and high optical efficiency.However,chromatic aberration remains a serious longstanding problem for diffractive optics,hindering their broader adoption.To overcome the chromatic aberrations for red,green and blue(RGB)light sources,in this paper,we propose a counterintuitive multi-twist structure to achieve narrowband PBOEs without crosstalk,which plays a vital role to eliminate the chromatic aberration.The performance of our designed and fabricated narrowband Pacharatnam-Berry lenses(PBLs)aligns well with our simulation results.Furthermore,in a feasibility demonstration experiment using a laser projector,our proposed PBL system indeed exhibits a diminished chromatic aberration as compared to a broadband PBL.Additionally,polarization raytracing is implemented to demonstrate the versatility of the multi-twist structure for designing any RGB wavelengths with high contrast ratios.This analysis explores the feasibility of using RGB laser lines and quantum dot light-emitting diodes.Overall,our approach enables high optical efficiency,low fabrication complexity,and high degree of design freedom to accommodate any liquid crystal material and RGB light sources,holding immense potential for widespread applications of achromatic PBOEs.
文摘Under the starry night,a fashion extravaganza was staged in Lhasa.The Fashion Night is a local fashion show in Xizang combining tradition and innovation as well as modernity and international flavor.By providing them with opportunities to present their art works to more audiences,it built a platform for young Tibetan designers for their careers to take root and blossom on the plateau.It is also aimed to bring more people to pay attention to the fashion culture of Xizang,and infuse new vitality into the development of local fashion industry.
基金supported by The National Science and Technology Major Project under contract(No.2011ZX05025-002-03)The Project of China National Offshore Oil Corporation(CNOOC)Limited under contract(No.CCL2013ZJFNO729)The National Natural Science Foundation of China under contract(No.41530963)。
文摘In this paper,core samples from the Well LS33 in the deep-water area of the Qiongdongnan Basin(QDNB)in the South China Sea were selected and analyzed by group(authigenic carbonate and terrigenous detritus)to obtain the contents of rare earth elements(REE)to explore the degree of preservation of paleo-seawater information by carbonate components and elucidate the provenance relationship between the QDNB and the Yinggehai Basin and the provenance changes in the deep-water area of the QDNB since the Oligocene.The main achievements of this paper are as follows:(1)In the process of extracting the autogenic carbonate,the iron-manganese oxide envelope on the surface of the sediment particles(which can adsorb REE or its complexes in seawater)will partially dissolve into the autogenic carbonate components,thus covering the REE geochem-ical information of paleo-seawater carried by the auto-genic carbonate.Therefore,caution should be exercised when using the geochemical characteristics of REE in the carbonate component of impure carbonate rocks to reflect the sedimentary paleoenvironment.(2)The analysis of the REE geochemical characteristics of multiple cores in the Ying-gehai-QDNB shows that there is a close provenance rela-tionship between the two Basins.The sediments in the central depression area of the Yinggehai Basin and the deep-water area in the western part of the QDNB generally contain more feldspar(Eu-rich)minerals.Since the Eocene,paleo-rivers have carried ultramafic-mafic materials originating from the western South China Sea into the sea.Affected by the transport distance and sea level changes,the content of feldspar(Eu-rich)minerals in the sediments of the QDNB from west to east gradually decreased.
基金financially supported by the National Natural Science Foundation of China(Nos.52293395 and 52293393)the Xiongan Science and Technology Innovation Talent Project of MOST,China(No.2022XACX0500).
文摘Producing steel requires large amounts of energy to convert iron ores into steel,which often comes from fossil fuels,leading to carbon emissions and other pollutants.Increasing scrap usage emerges as one of the most effective strategies for addressing these issues.However,typical residual elements(Cu,As,Sn,Sb,Bi,etc.)inherited from scrap could significantly influence the mechanical properties of steel.In this work,we investigate the effects of residual elements on the microstructure evolution and mechanical properties of a quenching and partitioning(Q&P)steel by comparing a commercial QP1180 steel(referred to as QP)to the one containing typical residual elements(Cu+As+Sn+Sb+Bi<0.3wt%)(referred to as QP-R).The results demonstrate that in comparison with the QP steel,the residual elements significantly refine the prior austenite grain(9.7μm vs.14.6μm)due to their strong solute drag effect,leading to a higher volume fraction(13.0%vs.11.8%),a smaller size(473 nm vs.790 nm)and a higher average carbon content(1.26 wt%vs.0.99 wt%)of retained austenite in the QP-R steel.As a result,the QP-R steel exhibits a sustained transformation-induced plasticity(TRIP)effect,leading to an enhanced strain hardening effect and a simultaneous improvement of strength and ductility.Grain boundary segregation of residual elements was not observed at prior austenite grain boundaries in the QP-R steel,primarily due to continuous interface migration during austenitization.This study demonstrates that the residual elements with concentrations comparable to that in scrap result in significant microstructural refinement,causing retained austenite with relatively higher stability and thus offering promising mechanical properties and potential applications.
文摘The data production elements are driving profound transformations in the real economy across production objects,methods,and tools,generating significant economic effects such as industrial structure upgrading.This paper aims to reveal the impact mechanism of the data elements on the“three transformations”(high-end,intelligent,and green)in the manufacturing sector,theoretically elucidating the intrinsic mechanisms by which the data elements influence these transformations.The study finds that the data elements significantly enhance the high-end,intelligent,and green levels of China's manufacturing industry.In terms of the pathways of impact,the data elements primarily influence the development of high-tech industries and overall green technological innovation,thereby affecting the high-end,intelligent,and green transformation of the industry.
基金supported by National Natural Science Foundation of China(Grants 72474022,71974011,72174022,71972012,71874009)"BIT think tank"Promotion Plan of Science and Technology Innovation Program of Beijing Institute of Technology(Grants 2024CX14017,2023CX13029).
文摘As a new type of production factor in healthcare,healthcare data elements have been rapidly integrated into various health production processes,such as clinical assistance,health management,biological testing,and operation and supervision[1,2].Healthcare data elements include biolog.ical and clinical data that are related to disease,environ-mental health data that are associated with life,and operational and healthcare management data that are related to healthcare activities(Figure 1).Activities such as the construction of a data value assessment system,the devel-opment of a data circulation and sharing platform,and the authorization of data compliance and operation products support the strong growth momentum of the market for health care data elements in China[3].
基金Supported by National Natural Science Foundation of China(12301041)。
文摘In this paper,potent index of an element and pseudo clean rings are considered.Some properties and examples of pseudo clean rings are given.We also show that Zm is pseudo clean for every 2≤m∈Z and pseudo clean rings are clean.Furthermore,we prove pseudo clean rings are directly finite and have stable range one.
基金Supported by Project of NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine(2023GSMPA-KL06,2024GSMPA-KL16).
文摘[Objectives]To investigate the content and distribution of inorganic elements in Astragalus membranaceus sourced from various regions in Gansu Province.[Methods]28 batches of A.membranaceus samples were collected and subsequently digested using the Multiwave 7000 super microwave digestion system.The contents of aluminum(Al),barium(Ba),beryllium(Be),cobalt(Co),chromium(Cr),iron(Fe),gallium(Ga),magnesium(Mg),manganese(Mn),nickel(Ni),antimony(Sb),tin(Sn),strontium(Sr),titanium(Ti),thallium(Tl),vanadium(V),and zinc(Zn)were quantified utilizing a PerkinElmer 2000 inductively coupled plasma mass spectrometer.Principal component analysis was performed utilizing SPSS 25.0 to identify the distinctive characteristic elements of A.membranaceus.Additionally,systematic cluster analysis was conducted using these characteristic elements as variables to investigate the relationship between the primary inorganic elements and the geographical origin of A.membranaceus.[Results]17 inorganic elements were identified in A.membranaceus specimens collected from Gansu Province,with characteristic elements including Ba,Co,Fe,Ga,Mn,Zn,and Sn.The contents of inorganic elements in various sources of A.membranaceus exhibited significant variability and demonstrated distinct clustering characteristics.[Conclusions]A.membranaceus,originating from Gansu Province,exhibits a high content of inorganic elements.However,variations in ecological environments can lead to differences in the specific inorganic elements that are enriched.This study aims to provide a reference for the further development and application of A.membranaceus.
文摘This review provides a comprehensive summary of biomass-based adsorption,with a particular focus on biochar as an innovative,sustainable,and eco-friendly technique for recovering rare earth elements(REEs) from various sources.This study details primary adsorption mechanisms,including physical adsorption,ion exchange,electrostatic attraction,surface complexation,and precipitation,providing a nuanced understanding of how these processes contribute to metal recovery.Additionally,it discusses various biochar modification methods aimed at enhancing surface functionalities,thereby improving adsorption capacity and selectivity.It further addresses the critical challenge of biochar regeneration,outlining methods such as thermal,solvent,microwave irradiation,and supercritical fluid regeneration to sustain biochar's efficacy over multiple cycles.Overall,this comprehensive analysis highlights biochar's versatility and potential in environmental remediation and resource recovery,emphasizing the importance of optimized regeneration techniques to maintain its adsorption efficiency and future research directions for large-scale applications.
文摘This work focused on determining the physico-chemical characteristics (pH, carbon and nitrogen) and trace metal elements (TMEs) content (As, Sb, Cd, Hg, Ni, Pb, Cr, Zn) of soils in the Brazzaville city. Soil samples were taken from a depth of 0 to 20 cm using a hand auger on both banks of five tributaries of the Congo River (Djoué, Mfilou, Mfoa, Tsiémé, Djiri) that flow through the city of Brazzaville. 90 sampling points were defined, with 3 points 250 m apart on the banks and located, for each river, at three sites: upstream, midstream and downstream. Finally, 15 composite samples representative of the study area were taken. The average pH values of the water varied between 6.5 and 7.5. These pH values show that the soils studied are neutral. Total carbon content varied between 0.7% (Djiri) and 1.6% (Djoué). Total nitrogen content ranged from 0.08% (Djiri) to 0.12% (Djoué). TMEs contents varied from 0.5 to 1.8 mg/kg for Sb, from 0.5 to 2.5 mg/kg for As, from 0.1 to 0.18 mg/kg for Cd, from 4.2 to 11.3 mg/kg for Cr, from 0.07 to 0.27 mg/kg for Hg, from 0.7 to 2.4 mg/kg for Ni, from 0 to 158 mg/kg for Pb and from 16 to 105 mg/kg for Zn. The lowest TMEs levels were observed in the soils of the Djiri river, while the highest levels were observed in the soils of the Djoué and Tsiémé rivers. The ANOVA and Bonferroni test did not show significant differences in the means of the parameters measured (p > 0.05). The TMEs levels were below the accepted standards (NF U44-041), with the exception of Pb, which had high levels downstream of the Djoué. According to the pollution index values calculated using soil TME content, the soils on the banks of the Djoué river are considered polluted, while those on the banks of the Tsiémé river are moderately polluted, those on the banks of the Mfoa and Mfilou rivers are slightly polluted, and the soils on the banks of Djiri river are unpolluted.
文摘Rare earth elements(REEs),with their unique magnetic,optical,and electrical properties,have become indispensable strategic resources.Widely applied in critical fields such as aviation,telecommunications,electronics,energy,transportation,and medicine,REEs play a vital role in advancing technology and driving social and economic development.However,the REE industry faces numerous challenges,including unbalanced resource distribution,supply and demand imbalances,international competition,technological limitations,and associated environmental pollution.This paper,incorporating both the historical evolution and current state of the REE industry,provides a comprehensive examination of the chemistry,applications,resources,technologies,challenges,and prospects of REEs.Specifically,it analyzes China's REE industry,which holds the largest global reserves and production capacity.As a key feature,this paper introduces the Tai Chi model for sustainable development in the REE industry,offering an in-depth analysis of two primary approaches—mining and recycling;the four critical participants—governments,enterprises,researchers,and consumers;and the eight essential influencing factors—resources,energy,environment,policy,applications,technology,supply and demand,and economy.The Tai Chi model not only clarifies the responsibilities and significance of each individual but also highlights their interconnectedness,providing a compelling framework for envisioning the sustainable development of the REE industry.Moreover,the paper identifies the major challenges currently facing the industry and offers insights into the future development of REEs.As such,this work contributes to a deeper understanding of the multifaceted REE landscape and underscores the importance of sustainable practices to ensure REEs'lasting positive impact on the global industry.
基金Project supported by the Science and Engineering Research Board of India(SRG/2020/002096)。
文摘Rare earth elements(REEs)play a crucial role in many technologies from daily appliances in cell phones to more advanced wind turbines and electric cars.Permanent magnets account for a quarter of total global REEs production and have high recycling value.In this study,smelting process was used to selectively oxidize REEs in the permanent magnets by adding Fe_(2)O_(3).This separates REEs into a slag phase from an iron-rich metallic phase.B_(2)O_(3) was also added to the system as a flux to lower the slag melting temperature.This minimizes REEs loss to the metallic phase and allows a more efficient phase separation.The effect of flux and oxidizing agent addition was investigated on both regular and cerium-rich NdFeB(NdCeFeB)magnets.At 1350℃and for 1 h,the slag phase was successfully separated from the metallic phase with the addition of 0.8 stoichiometric amount of Fe_(2)O_(3) and 40 wt%of B_(2)O_(3).Scanning electron microscopy-energy dispersive X-ray spectroscopy(SEM-EDX)analysis reveals that REEs in the magnet do not migrate to the metal phase while the REE-rich slag phase contains almost no iron.After the selective removal of iron into the metallic phase,REEs are recovered from the slag phase through an acid leaching process allowing>99%of REEs recovery.Boron in the magnet can also be recovered as useful boric acid by evaporation and crystallisation technique.The proposed process in this study is reagent and energy-efficient with almost complete valorisation of both NdCeFeB and NdFeB magnets.
基金Project(2022YFC2105300) supported by the National Key Research and Development Program of ChinaProject(52274288) supported by the National Natural Science Foundation of China。
文摘With the growing awareness of environmental protection and the increasing demand for rare earth elements(REEs),it has become necessary to efficiently remove and recover REEs from mine wastewater.In this study,jarosite(Jar)and schwertmannite(Sch)were biosynthesized using Acidithiobacillus ferrooxidans for the adsorption of REEs.Additionally,the adsorption capacities of Jar and Sch for La^(3+),Ce^(3+),Pr^(3+),Nd^(3+),Sm^(3+),Gd^(3+),Dy^(3+),and Y^(3+)in mine wastewater were improved by mechanical activation.XRD,FTIR,BET,and SEM-EDS analyses revealed that mechanical activation did not alter the phase of the material,but increased the amount of surface-OH and SO42−groups,as well as the specific surface area.This significantly enhanced the adsorption performance of Jar and Sch for REEs.The optimum adsorption time and pH were determined through batch adsorption experiments.Besides,the adsorption kinetics were studied and found to align well with the pseudo-second-order model.Furthermore,the thermodynamic parameters(ΔG^(Θ),ΔH^(Θ)andΔS^(Θ))and adsorption isotherms were analyzed.The results indicated that mechanically activated schwertmannite(M-Sch)exhibited superior adsorption performance for REEs compared to mechanically activated jarosite(M-Jar).Moreover,M-Sch was reusable and exhibited high adsorption efficiency of REEs in actual mine wastewater,exceeding 92%.
基金supported by the National Natural Science Foundation of China(No.42222205)the National Key Research and Development Program of China(No.2017YFC0602403)the Fundamental Research Funds for the Central Universities,CHD(No.300102273301)。
文摘Quartz trace elements are extensively employed in studying magmatic evolution,fluid evolution,and metal enrichment.The Bianjiadayuan Ag-Pb-Zn-Sn deposit is a typical magmatichydrothermal system in northeastern China,however,studies on its complex magmatic-hydrothermal evolution are limited.This study investigates the quartz from the Bianjiadayuan deposit to gain insight into the physicochemical evolution of mineralization using cathodoluminescence(CL)textures and laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of quartz.Five types quartz(Q1 to Q5)were identified.From Q1 in quartz porphyry to Q5 in Ag-Pb-Zn veins,the CL intensity and Ti content gradually decreases,and Ge,Ge/Ti,and Al/Ti ratios increase,indicating a temperature decline from magmatic to hydrothermal stages.The Sb content shows an opposite trend to Ti content,correlating positively with Ge content in quartz,suggesting that Sb content could also be temperature-dependent.These trace elements in quartz indicate cooling is critical for Ag mineralization.Furthermore,quartz phenocryst(Q1)from the quartz porphyry shows low Al/Ti(mostly<4)and Ge/Ti ratios(<0.04),suggesting a low degree of magmatic evolution.The Sb content in Q5 from Ag-Pb-Zn-quartz veins(>1 ppm,mostly tens of ppm)is notably higher compared to quartz in other lithologies including Sn-bearing quartz veins(<1 ppm),suggesting that Sb contents can serve as an effective indicator of Ag mineralization.
基金Project supported by the United States Department of Energy,National Technology Laboratory through the NETL-Penn State University Coalition for Fossil Energy Research(UCFER 0007-PSU-DOE-6825,DE-FE0026285)。
文摘This article addresses the question of how the global and U.S.market sector allocations for rare earth elements compare.Accordingly,this article reports rare earth oxide(REO)market sector allocations,resolved by elemental profile for 2020 and reciprocally REO consumption resolved by end market use.Differences are calculated relative to 2008 and presented as percentages and as absolute tonnage.These differences encompass both changes in relative sector demand and growth rate.Historical trends,global and U.S.for REO usage by sector are calculated for the period of 2018-2022.End market sector demands,as percentages are presented,referenced to United States Geological Survey(USGS)values from 2008.Attention is given to permanent magnets and associated elements given the growing renewable generation and vehicle electrification.The criticality of Nd and Dy are considered given that they are the foundation of NdFeB permanent magnets,prominent in electric vehicle traction motors and direct drive wind turbine generators.Economic activity associated with REE market sectors is presented.Notably usage does not reflect economic value.A prime example are catalysts versus magnets.Last,vast reserves of light and heavy REEs exist in coal and coal-byproducts with potential high impact upon critical REEs and associated economics.
文摘Phosphoric acid is a key ingredient in fertilizer production and contains many rare earth elements(REEs).Recovering REEs from phosphoric acid can prevent the accumulation of these elements in the soil and help bridge the gap between supply and demand.In this concern,a new material called Si-6G PAMAMPPAAM dendrimers modified silica gel terminated with phenylphosphonic acid-amide moieties was developed and its ability to adsorb Nd(Ⅲ)and Er(Ⅲ)from the phosphoric acid solution was investigated.K inetics and isotherm of the uptake process were investigated to explo re the so rption characte ristics.The attained results show that both metal ions exhibit the same adsorption performance,and the uptake process is depicted as a chemisorption,monolayer,uniform,and homogeneous process.The equilibrium state is achieved within 120 min,and the maximum uptake capacity is 16.7 mg Nd(Ⅲ)/g,and 14.0 mg Er(Ⅲ)/g.Sorption thermodynamics is an endothermic,spontaneous,and feasible uptake process.Nitric acid(1.0 mol/L)is found to be efficient for adsorbing about 94.3%and 92.5%of neodymium(Ⅲ)and erbium(Ⅲ)respectively,and the prepared Si-6G PAMAM-PPAAM demonstrates excellent stability over five consecutive sorption/desorption cycles.Preliminary tests on commercial phosphoric acid demonstrate that Si-6G PAMAM-PPAAM retains its effective REEs uptake from a complex comm ercial phosph oric acid solution.
基金Project supported by Next Generation EUMission 4,Component 1,CUP:J53D23007540006-PRIN_2022HYH95P。
文摘In this study,a pristine biochar(BCP)from dead Posidonia oceanica leaves,a by-product of biofuel production,and its two chemically activated forms with KOH(BBCP)and with H_(3)PO_(4)(ABCP)were tested as new adsorbent materials for the recovery of three rare earth cations(REE),namely La^(3+),Dy^(3+)and Nd^(3+)from aqueous solutions.The biochars were characterized through elemental analysis,nitrogen adsorption-desorption analysis,attenuated total reflectance-Fourier transform infrared(ATR-FT-IR)spectroscopy,scanning electron microscopy and energy dispersive X-ray spectroscopy(SEM-EDX),and pHpzcmeasurements.From single batch adsorption experiments at different pH values,the pH=5.0 was chosen as the best pH value for kinetic and isotherm adsorption studies.The effect of ionic medium on the adsorption ability of the best REE adsorbent ABCP was also evaluated by carrying out isotherm experiments in 0.1 mol/L NaNO3.Inductively coupled plasma optical emission spectroscopy(ICP-OES)was used to evaluate the REE concentration in the solutions.Kinetic and isotherm data of REE adsorption were tentatively subjected to regression analysis with various kinetic and isotherm equations.The parameter values of the best fit models and characterization results were analyzed to obtain information about the adsorption mechanism.The recyclability of ABCP adsorbent was also evaluated through recycle and reuse column experiments in which 0.1 mol/L HNO3and EDTA were used as extractant solutions.The chemical activation processes enhance the adsorption capacity of BCP by increasing the carbonization,the specific and microporous surface area,the pore volume and,in the case of activation with H_(3)PO_(4),introducing phosphate groups in the biochar structure.The promising REE recovery results obtained with ABCP transform the biochar from a by-product to a high value-added material.This contributes to making biofuel production a more cost-effective and environmentally-friendly process.
基金supported by the Technology Innovation (20010817,Technology for the ecofriendly rare earth refining from used motors and manufacture of permanent magnet materials) funded by the Ministry of Trade,Industry & Energy (MOTIE),Korea。
文摘The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we performed an exchange reaction between magnesium halides(fluoride and chloride) and waste NdFeB scrap and then compared the characteristics of the extracted halides salts.The compositions of the ternary Mg fluoride(LiF:NaF:MgF_(2)=50:40:10 in mole ratio) and chloride(LiCl:NaCl:MgCl_(2)=10:50:40 in mole ratio) salts were thermodynamically determined for achieving low eutectic temperatures.The reactions between the NdFeB scrap powder(1-2 mm) and Mg halide salts were carried out at 1073 and 873 K for the fluoride and chloride systems,respectively,in an argon atmosphere.After the reaction,we separated Nd halide from the residual salt and evaluated the Ndextraction rate.The phase formation of the salt was analyzed using X-ray diffraction(XRD),and the extraction rate of Nd was analyzed using inductively coupled plasma optical emission spectroscopy(ICPOES).Nd was extracted in the form of Nd halide(NdF_(3) or NdCl_(3)),and the extraction rates in the fluoride and chloride systems are 98.64% and 84.59%,respectively.Thus,the fluoride system is more effective than the chloride system for Nd extraction.Our study provides a comprehensive comparative analysis of the effectiveness of fluo ride and chlo ride systems in extracting REEs from NdFeB magnet scrap.Our study findings can be used to develop an effective method for recycling magnet scraps.