期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation 被引量:12
1
作者 Lanlan Yang Minghui Chen +4 位作者 Jinlong Wang Yanxin Qiao Pingyi Guo Shenglong Zhu Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第10期49-58,共10页
MCrAlY(M=Ni and/or Co)overlay coating is widely used as a protective coating against high temperature oxidation and corrosion.However,due to its big difference in chemical composition with the underlying superalloy,el... MCrAlY(M=Ni and/or Co)overlay coating is widely used as a protective coating against high temperature oxidation and corrosion.However,due to its big difference in chemical composition with the underlying superalloy,elements interdiffusion occurs inevitably.One of the direct results is the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)with a high density of fine topological closed-packed phases(TCPs),weakening dramatically the mechanical properties of the alloy substrate.It is by now the main problem of modern high-temperature metallic coatings,but there are still hardly any reports studying the formation,growth and transformation of IDZ and SRZ in deep,as well as the precipitation of TCPs.In this work,a typical NiCrAlY coating is deposited by arc ion plating on a single-crystal superalloy N5.Elements interdiffusion between them and its relationship on microstructure were clarified.Cr rather than Al from the coating diffuses into the alloy at high temperatures and segregates immediately beneath their interface,contributing largely to the formation of IDZ.Simultaneously,diffusion of Ni from the deep alloy to IDZ leads to the formation and continuous expansion of SRZ. 展开更多
关键词 Single-crystal superalloys NiCrAlY coating High-temperature oxidation Arcion plating Elements interdiffusion MICROSTRUCTURE
原文传递
An in-situ formed ceramic/alloy/ceramic sandwich barrier to resist elements interdiffusion between NiCrAlY coating and a Ni-based superalloy 被引量:5
2
作者 Cean Guo Feng Zhou +3 位作者 Minghui Chen Jinlong Wang Shenglong Zhu Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第11期1-11,共11页
NiCrAlY coatings are widely applied on various alloy components to enhance oxidation and/or corrosion resistance at high temperatures.However,elements interdiffusion occurs between them due to composition difference.A... NiCrAlY coatings are widely applied on various alloy components to enhance oxidation and/or corrosion resistance at high temperatures.However,elements interdiffusion occurs between them due to composition difference.Although various diffusion barriers(DBs)are reported,this problem is still far from completely solved as most ceramic barriers suffer from poor adherence,while the metallic barriers play a limited role.In this study,NiCrAlY coating was deposited onto a second-generation single-crystal superalloy by arc ion plating.A novel simple method is provided to address elements interdiffusion.By pre-oxidation at a moderate temperature,a thin scale of Ni(Co)O forms at the alloy surface.It transforms to be an alumina/NiCoCr alloy/alumina sandwich by an in-situ reaction with the overlaying NiCrAlY coating and the alloy substrate at high service temperatures,which offers good barrier ability in conjunction with strong adhesion.In the presence of such an alumina/alloy/alumina DB,the NiCrAlY coating provides high resistance to oxidation and scale spallation for the alloy substrate. 展开更多
关键词 SUPERALLOYS NICRALY coating High-temperature oxidation Elements interdiffusion Diffusion barrier
原文传递
Influence of deformation passes on interface of SiC_p/Al composites consolidated by equal channel angular pressing and torsion 被引量:2
3
作者 钱陈豪 李萍 薛克敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1376-1382,共7页
Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C part... Powder mixture of pure Al and oxidized Si C was consolidated into 10%(mass fraction) Si Cp/Al composites at 250 °C by equal channel angular pressing and torsion(ECAP-T). The valence states of Si for Si C particulates and Al for the as-consolidated composites were detected by X-ray photoelectron spectroscopy(XPS). The interfacial bondings of the composites were characterized by scanning electron microscopy(SEM). The elements at the interface were linearly scanned by energy dispersive spectroscopy(EDS) and the EDS mappings of Si and Al were also obtained. The values of the nanohardness at different positions within 2 μm from the boundary of Si C particulate were measured. The results show that after ECAP-T, interfacial reaction which inhibits injurious interfacial phase occurs between Al and the oxide layer of Si C, and the element interdiffusion which can enhance interfacial bonding exists between Al and Si C. As ECAP-T passes increase, the reaction degree is intensified and the element interdiffusion layer is thickened, leading to the more smooth transition of the hardness from Si C to Al. 展开更多
关键词 metal matrix composites CONSOLIDATION DEFORMATION interfacial reaction element interdiffusion
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部