This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element...This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element method.The adhesion behavior is described based on the Maugis-Dugdale model.The adhesion-driven conjugate gradient method is employed to calculate the distribution of unknown pressures,while the discrete convolution-fast Fourier transform is utilized to compute the deformations,surface electric and magnetic potentials as well as the subsurface stresses,electric displacements,and magnetic inductions.The goal of this study is to investigate the influences of adhesion parameter,friction coefficient,coating thickness,and surface electric and magnetic charge densities on contact behaviors,such as contact area and pressures,electric and magnetic potentials,and subsurface stresses.展开更多
This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The me...This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.展开更多
This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solv...This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate.展开更多
The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRE...The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRESP),is an important factor affecting the homogeneity.This study investigated the influence of the size combination and MRESP on the distribution homogeneity of particles in aggregate blend using discrete element method(DEM).An indicator quantifying the distribution homogeneity was established according to the coefficient of variation(CV)for particle number.Two-size,three-size,and four-size aggregate blends with various compositions were designed.Laboratory tests show the DEM simulation is feasible.The particle distribution homogeneity in various blends was analyzed.The results showed the distribution homogeneity of each size particles in a blend is closely related to their mass fraction.The higher the mass fraction of the particles,the more homogeneous the distribution of them.The MRESP has no significant influence on the homogeneity of the blend composed of only coarse aggregates.However,the homogeneity of the blend composed of coarse and fine aggregates improves gradually with the increase of the mass fraction of fine aggregates.The smaller the maximum particle size in a blend,the better the homogeneity.It is suggested that the mass fraction of fine aggregates should be between 33%and 50%for achieving good homogeneity of aggregate blends.The research results can provide a reference for gradation design of asphalt mixture.展开更多
Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump mate...Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.展开更多
The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect ...The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.展开更多
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
Blade clearance is an important technical parameter of the shear, which determines the shear quality of plate. The finite element method was used to simulate shearing process which is in the different specifications a...Blade clearance is an important technical parameter of the shear, which determines the shear quality of plate. The finite element method was used to simulate shearing process which is in the different specifications and blade clearances, and the impact on blade section and shearing force of blade clearance was analyzed. Comparing with traditional experience formulas and measured values, the limitations of the experience formulas were proved. And by contrasting with the shearing force data collected from Linfen Iron and Steel Company, the reliability of the finite element method was further proved. The simulated results show that the simulated values controlled by ductile fracture criterion and measured values are very close, and the deviation value is in the range of 4.8%-20.8%. For the same steel, if the plate is thicker, the blade clearance will be greater, and thickness and blade clearance are approximately linear. The difference between numerical simulation of the maximum shearing force and the measured results is 7.7% to 12.0%, and the simulation results are close to facts. With the increase of blade clearance and the thickness, the shearing force was increased to some degree.展开更多
Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the...Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the pile-subsoilrelative displacement (△s), plays an important role in reducing the embankment load falling on weak soil, however, the funda-mental characteristics (e.g., formation and features) of soil arching remain poorly understood. In this study, a series of discreteelement method (DEM) modellings are performed to study the formation and features of soil arching with the variation of As inpiled embankments with or without geosynthetic reinforcement. Firstly, calibration for the modelling parameters is carried out bycomparing the DEM results with the experimental data obtained from the existing literature. Secondly, the analysis of the macro-and micro-behaviours is performed in detail. Finally, a parametric study is conducted in an effort to identify the influences of threekey factors on soil arching: the friction coefficient of the embankment fill (f), the embankment height (h), and the pile clear spacing(s-a). Numerical results indicate that △s is a key factor governing the formation and features of soil arching in embankments. Tobe specific, soil arching gradually evolves from two inclined shear planes at a small △s to a hemispherical arch at a relatively largeAs. Then, with a continuous increase in △s, the soil arching height gradually increases and finally approaches a constant value of0.8(s-a) (i.e., the maximum soil arching height). For a given case, the higher the soil arching height, the greater the degree of soilarching effect. The parametric study shows that the friction coefficient of the embankment fill has a negligible influence on theformation and features of soil arching. However, embankment height is a key factor governing the formation and features of soilarching. In addition, pile clear spacing has a significant effect on the formation of soil arching, but not on its features.展开更多
An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite...An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.展开更多
This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the...This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.展开更多
Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization pr...Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization process, the mechanism of magnetization reversal was analyzed.For the Pr2Fe14B with 10 nm grains or its composite with 10vol.% α-Fe, the coercivity was determined by nucleation of reversed domain that took place at grain boundaries.However, for Pr2Fe14B with 30 nm grains, coercivity was controlled by pinning of the nucle-ated domain.For Pr2Fe14B/α-Fe with 30vol.% α-Fe, the demagnetization behavior was characterized by continuous reversal of α-Fe moment.展开更多
The effect of interconnect linewidth on the evolution of intragranular microcracks due to surface diffusion induced by electromigration is analyzed by finite element method.The numerical results indicate that there ex...The effect of interconnect linewidth on the evolution of intragranular microcracks due to surface diffusion induced by electromigration is analyzed by finite element method.The numerical results indicate that there exists critical values of the linewidth hc,the electric fieldχc and the aspect ratioβc.When h>hc,χ<χc orβ<βc,the microcrack will evolve into a stable shape as it migrates along the interconnect line.When h≤hc,χ≥χc orβ≥βc,the microcrack will split into two smaller microcracks.The critical electric field,the critical aspect ratio and the splitting time have a stronger dependence on the linewidth when h≤6.In addition,the decrease of the linewidth,the increase of the electric field or the aspect ratio is beneficial to accelerate microcrack splitting,which may delay the open failure of the interconnect line.展开更多
Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer pr...Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.展开更多
In the present survey, various methods for the acoustic design of aeroengine nacelle are first briefly introduced along with the comments on their advantages and disadvantages for practi- cal application, and then det...In the present survey, various methods for the acoustic design of aeroengine nacelle are first briefly introduced along with the comments on their advantages and disadvantages for practi- cal application, and then detailed analysis and discussion focus on a kind of new method which is called "transfer element method" (TEM) with emphasis on its application in the following three problems: turbomachinery noise generations, sound transmission in ducts and radiation from the inlet and outlet of ducts, as well as the interaction between them. In the theoretical frame of the TEM, the solution of acoustic field in an infinite duct with stator sound source or liner is extended to that in a finite domain with all knows and unknowns on the interface plane, and the relevant acoustic field is solved by setting up matching equation. In addition, based on combining the TEM with the boundary element method (BEM) by establishing the pressure and its derivative con- tinuum conditions on the inlet and outlet surface, the sound radiation from the inlet and outlet of ducts can also be investigated. Finally, the effects of various interactions between the sound source and acoustic treatment have been discussed in this survey. The numerical examples indicate that it is quite important to consider the effect of such interactions on sound attenuation during the acoustic design of aeroengine nacelle.展开更多
In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference me...In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.展开更多
A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the co...A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.展开更多
We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. M...We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. Material properties of the FG plate are graded in the thickness direction and assumed to obey a power law distribution of the volume fraction of the constituents. To set up the global eigenvalue equation, the plate is divided into sub-domains or elements and the generalized differential quadrature procedure is applied to discretize the governing, boundary and compatibility equations. By assembling discrete equations at all nodal points, the weighting coefficient and force matrices are derived. To validate the accuracy of this method, the results are compared with those of the exact solution and the finite element method. At the end, the effects of different variables and local elastic support arrangements on the buckling load factor are investigated.展开更多
In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or micr...In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.展开更多
基金support from the National Natural Science Foundation of China(12102085)the Postdoctoral Science Foundation of China(2023M730504)+2 种基金the Sichuan Province Regional Innovation and Cooperation Project(2024YFHZ0210)supported by the European Union-NextGenerationEU through the Italian Ministry of University and Research under the following programs:(NM)PRIN2022(Projects of Relevant National Interest)grant no.2022SJ8HTC-Electroactive Gripper for Micro-Object Manipulation(ELFIN)(NM)PRIN2022 PNRR(Projects of Relevant National Interest)grant no.P2022MAZHX-Tribological Modeling for Sustainable Design of Industrial Frictional Interfaces(TRIBOSCORE).
文摘This paper investigates the frictional adhesive contact of a rigid,electrically/magnetically conductive spherical indenter sliding past a multiferroic coating deposed onto a rigid substrate,based on the hybrid element method.The adhesion behavior is described based on the Maugis-Dugdale model.The adhesion-driven conjugate gradient method is employed to calculate the distribution of unknown pressures,while the discrete convolution-fast Fourier transform is utilized to compute the deformations,surface electric and magnetic potentials as well as the subsurface stresses,electric displacements,and magnetic inductions.The goal of this study is to investigate the influences of adhesion parameter,friction coefficient,coating thickness,and surface electric and magnetic charge densities on contact behaviors,such as contact area and pressures,electric and magnetic potentials,and subsurface stresses.
基金Financial support of this work by the Technology Development program of China(Grant No.2022204B003)National Natural Science Foundation of China(12272083 and 12172078)the Fundamental Research Funds for the Central Universities(DUT24YJ136)is gratefully acknowledged.
文摘This paper presents a novel element differential method for modeling cracks in piezoelectric materials,aiming to simulate fracture behaviors and predict the fracture parameter known as the J-integral accurately.The method leverages an efficient collocation technique to satisfy traction and electric charge equilibrium on the crack surface,aligning internal nodes with piezoelectric governing equations without needing integration or variational principles.It combines the strengths of the strong form collocation and finite element methods.The J-integral is derived analytically using the equivalent domain integral method,employing Green's formula and Gauss's divergence theorem to transform line integrals into area integrals for solving two-dimensional piezoelectric material problems.The accuracy of the method is validated through comparison with three typical examples,and it offers fracture prevention strategies for engineering piezoelectric structures under different electrical loading patterns.
基金supported by the National Natural Science Foundation of China Excellence Research Group Program for“Multiscale Problems in Nonlinear Mechanics”(Grant No.12588201)the National Key R&D Program of China(Grant No.2023YFA1008901)+1 种基金the National Nat-ural Science Foundation of China(Grant No.12172009)supported by“The Fundamental Research Funds for the Central Universities,Peking University”.
文摘This study presents a novel methodology to obtain an approximate analytical solution for an isotropic homo-geneous elastic medium with displacement and traction boundary conditions.The solution is derived through solving a specific numerical problem under the scope of the linear finite element method(LFEM),so the method is termed computational method for analytical solutions with finite elements(CMAS-FE).The primary objective of the CMAS-FE is to construct analytical expressions for displacements and reaction forces at nodes,as well as for strains and stresses at elemental quadrature points,all of which are formulated as infinite series solutions of various orders of Poisson’s ratios.Like the conventional LFEM,the CMAS-FE forms global sparse linear equations,but the Young’s modulus and Poisson’s ratio remain variables(or symbols).By employing a direct inverse method to solve these symbolic linear systems,an analytical expression of the displacement field can be constructed.The CMAS-FE is validated via patch and bending tests,which demonstrate convergence with mesh and term refine-ment.Furthermore,the CMAS-FE is applied to obtain the bending stiffness of a beam structure and to estimate an approximate stress intensity factor for a straight crack within a square-shaped plate.
基金funded by the National Natural Science Foundation of China(No.51978048).
文摘The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRESP),is an important factor affecting the homogeneity.This study investigated the influence of the size combination and MRESP on the distribution homogeneity of particles in aggregate blend using discrete element method(DEM).An indicator quantifying the distribution homogeneity was established according to the coefficient of variation(CV)for particle number.Two-size,three-size,and four-size aggregate blends with various compositions were designed.Laboratory tests show the DEM simulation is feasible.The particle distribution homogeneity in various blends was analyzed.The results showed the distribution homogeneity of each size particles in a blend is closely related to their mass fraction.The higher the mass fraction of the particles,the more homogeneous the distribution of them.The MRESP has no significant influence on the homogeneity of the blend composed of only coarse aggregates.However,the homogeneity of the blend composed of coarse and fine aggregates improves gradually with the increase of the mass fraction of fine aggregates.The smaller the maximum particle size in a blend,the better the homogeneity.It is suggested that the mass fraction of fine aggregates should be between 33%and 50%for achieving good homogeneity of aggregate blends.The research results can provide a reference for gradation design of asphalt mixture.
基金the financial support provided by MHRD,Govt.of IndiaCoal India Limited for providing financial assistance for the research(Project No.CIL/R&D/01/73/2021)the partial financial support provided by the Ministry of Education,Government of India,under SPARC project(Project No.P1207)。
文摘Sudden and unforeseen seismic failures of coal mine overburden(OB)dump slopes interrupt mining operations,cause loss of lives and delay the production of coal.Consideration of the spatial heterogeneity of OB dump materials is imperative for an adequate evaluation of the seismic stability of OB dump slopes.In this study,pseudo-static seismic stability analyses are carried out for an OB dump slope by considering the material parameters obtained from an insitu field investigation.Spatial heterogeneity is simulated through use of the random finite element method(RFEM)and the random limit equilibrium method(RLEM)and a comparative study is presented.Combinations of horizontal and vertical spatial correlation lengths were considered for simulating isotropic and anisotropic random fields within the OB dump slope.Seismic performances of the slope have been reported through the probability of failure and reliability index.It was observed that the RLEM approach overestimates failure probability(P_(f))by considering seismic stability with spatial heterogeneity.The P_(f)was observed to increase with an increase in the coefficient of variation of friction angle of the dump materials.Further,it was inferred that the RLEM approach may not be adequately applicable for assessing the seismic stability of an OB dump slope for a horizontal seismic coefficient that is more than or equal to 0.1.
文摘The static behavior of piezoelectric circular spherical shallow shells under both electrical and mechanical loads is studied by using the differential quadrature element method (DQEM). Geometrical nonlinearity effect is considered. Detailed formulations and procedures are given for the first time. Several examples are analyzed and accurate results are obtained by the DQEM. Based on the results in this paper, one may conclude that the DQEM is a useful tool for obtaining solutions of structural elements. It can be seen that the shell shape may be theore tically controlled and snap through may occur when the applied voltage reaches a critical value even without mechanical load for certain geometric configurations.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
基金Item Sponsored by National Key Basic Research Program of China (2012CB722801)
文摘Blade clearance is an important technical parameter of the shear, which determines the shear quality of plate. The finite element method was used to simulate shearing process which is in the different specifications and blade clearances, and the impact on blade section and shearing force of blade clearance was analyzed. Comparing with traditional experience formulas and measured values, the limitations of the experience formulas were proved. And by contrasting with the shearing force data collected from Linfen Iron and Steel Company, the reliability of the finite element method was further proved. The simulated results show that the simulated values controlled by ductile fracture criterion and measured values are very close, and the deviation value is in the range of 4.8%-20.8%. For the same steel, if the plate is thicker, the blade clearance will be greater, and thickness and blade clearance are approximately linear. The difference between numerical simulation of the maximum shearing force and the measured results is 7.7% to 12.0%, and the simulation results are close to facts. With the increase of blade clearance and the thickness, the shearing force was increased to some degree.
基金supported by the National Key Research and Development Program of China(2016YFC0800208)the National Natural Science Foundation of China(Nos.51278216,51478201,51308241,and 51608316)
文摘Piled embankments are widely used in highway and railway engineering due to their economy and efficiency inovercoming several issues encountered in constructing embankments over weak soils. Soil arching, caused by the pile-subsoilrelative displacement (△s), plays an important role in reducing the embankment load falling on weak soil, however, the funda-mental characteristics (e.g., formation and features) of soil arching remain poorly understood. In this study, a series of discreteelement method (DEM) modellings are performed to study the formation and features of soil arching with the variation of As inpiled embankments with or without geosynthetic reinforcement. Firstly, calibration for the modelling parameters is carried out bycomparing the DEM results with the experimental data obtained from the existing literature. Secondly, the analysis of the macro-and micro-behaviours is performed in detail. Finally, a parametric study is conducted in an effort to identify the influences of threekey factors on soil arching: the friction coefficient of the embankment fill (f), the embankment height (h), and the pile clear spacing(s-a). Numerical results indicate that △s is a key factor governing the formation and features of soil arching in embankments. Tobe specific, soil arching gradually evolves from two inclined shear planes at a small △s to a hemispherical arch at a relatively largeAs. Then, with a continuous increase in △s, the soil arching height gradually increases and finally approaches a constant value of0.8(s-a) (i.e., the maximum soil arching height). For a given case, the higher the soil arching height, the greater the degree of soilarching effect. The parametric study shows that the friction coefficient of the embankment fill has a negligible influence on theformation and features of soil arching. However, embankment height is a key factor governing the formation and features of soilarching. In addition, pile clear spacing has a significant effect on the formation of soil arching, but not on its features.
文摘An explicit finite element-finite difference method for analyzing the effects of two-dimensional visco-elastic localtopography on earthquake ground motion is prOPosed in this paper. In the method, at first, the finite elementdiscrete model is formed by using the artificial boundary and finite element method, and the dynamic equationsof local nodes in the discrete model are obtained according to the theory of the special finite element method similar to the finite difference method, and then the explicit step-by-step integration formulas are presented by usingthe explicit difference method for solving the visco-elastic dynamic equation and Generalized Multi-transmittingBoundary. The method has the advantages of saving computing time and computer memory space, and it is suitable for any case of topography and has high computing accuracy and good computing stability.
文摘This paper presents a combined application of the finite element method (FEM) and the differential quadrature method (DQM) to vibration and buckling problems of rectangular plates. The proposed scheme combines the geometry flexibility of the FEM and the high accuracy and efficiency of the DQM. The accuracy of the present method is demonstrated by comparing the obtained results with those available in the literature. It is shown that highly accurate results can be obtained by using a small number of finite elements and DQM sample points. The proposed method is suitable for the problems considered due to its simplicity and potential for further development.
基金supported by the National Natural Science Foundation of China (10574156)
文摘Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization process, the mechanism of magnetization reversal was analyzed.For the Pr2Fe14B with 10 nm grains or its composite with 10vol.% α-Fe, the coercivity was determined by nucleation of reversed domain that took place at grain boundaries.However, for Pr2Fe14B with 30 nm grains, coercivity was controlled by pinning of the nucle-ated domain.For Pr2Fe14B/α-Fe with 30vol.% α-Fe, the demagnetization behavior was characterized by continuous reversal of α-Fe moment.
基金supported by the Natural Science Foundation of Jiangsu Province of China (No. BK20141407)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The effect of interconnect linewidth on the evolution of intragranular microcracks due to surface diffusion induced by electromigration is analyzed by finite element method.The numerical results indicate that there exists critical values of the linewidth hc,the electric fieldχc and the aspect ratioβc.When h>hc,χ<χc orβ<βc,the microcrack will evolve into a stable shape as it migrates along the interconnect line.When h≤hc,χ≥χc orβ≥βc,the microcrack will split into two smaller microcracks.The critical electric field,the critical aspect ratio and the splitting time have a stronger dependence on the linewidth when h≤6.In addition,the decrease of the linewidth,the increase of the electric field or the aspect ratio is beneficial to accelerate microcrack splitting,which may delay the open failure of the interconnect line.
基金financial support from the Project of National Science Foundation of China(Grant No.41272346)the National Outstanding Youth Funds(Grant No.41225011)+2 种基金financial support from the Science & Technology Research Plan of China Railway Eryuan Engineering Group CO.LTD (Grant No.13164196(13-15))the Project of National Science Foundation of China(Grant Nos. 41472293,91430105)"hundred talents" program of CAS
文摘Many rock avalanches were triggered by the Wenchuan earthquake on May 12, 2008 in southwest China. Protection galleries covered with a single soil layer are usually used to protect against rockfall. Since one-layer protection galleries do not have sufficient buffer capacity, a two-layered absorbing system has been designed. This study aims to find whether an expanded poly-styrol (EPS) cushion, which is used in the soil-covered protection galleries for shock absorption, could be positioned under dynamic loadings. The dynamic impacts of the two-layered absorbing system under the conditions of rock avalanches are numerically simulated through a 2D discrete dement method. By selecting reasonable parameters, a series of numerical experiments were conducted to find the best combination for the two- layered absorbing system. The values of the EPS layer area as a percentage of the total area were set as 0% (Sl), 22~ (S2), and 70% ($3). 22~ of the area of the EPS layer was found to be a reasonable value, and experiments were conducted to find the best position of the EPS layer in the two-layered absorbing system. The numerical results yield useful conclusions regarding the interaction between the impacting avalanches and the two-layered absorbing system. The soil layer can absorb the shock energy effectively and S2 (0.4-m thick EPS cushion covered with soil layer) is the most efficient combination, which can reduce the impact force, compared with the other combinations.
基金the National Natural Science Foundation of China (No. 51106005)the National Basic Research Program of China (2012CB720201)
文摘In the present survey, various methods for the acoustic design of aeroengine nacelle are first briefly introduced along with the comments on their advantages and disadvantages for practi- cal application, and then detailed analysis and discussion focus on a kind of new method which is called "transfer element method" (TEM) with emphasis on its application in the following three problems: turbomachinery noise generations, sound transmission in ducts and radiation from the inlet and outlet of ducts, as well as the interaction between them. In the theoretical frame of the TEM, the solution of acoustic field in an infinite duct with stator sound source or liner is extended to that in a finite domain with all knows and unknowns on the interface plane, and the relevant acoustic field is solved by setting up matching equation. In addition, based on combining the TEM with the boundary element method (BEM) by establishing the pressure and its derivative con- tinuum conditions on the inlet and outlet surface, the sound radiation from the inlet and outlet of ducts can also be investigated. Finally, the effects of various interactions between the sound source and acoustic treatment have been discussed in this survey. The numerical examples indicate that it is quite important to consider the effect of such interactions on sound attenuation during the acoustic design of aeroengine nacelle.
基金heprojectissupportedbyNNSFofChina (No .1 9972 0 39) .
文摘In this paper, a high accuracy finite volume element method is presented for two-point boundary value problem of second order ordinary differential equation, which differs from the high order generalized difference methods. It is proved that the method has optimal order error estimate O(h3) in H1 norm. Finally, two examples show that the method is effective.
基金The project supported by the National Natural Science Foundation of China (19772025)
文摘A scheme of boundary element method for moving contact of two-dimensional elastic bodies using conforming discretization is presented. Both the displacement and the traction boundary conditions are satisfied on the contacting region in the sense of discretization. An algorithm to deal with the moving of the contact boundary on a larger possible contact region is presented. The algorithm is generalized to rolling contact problem as well. Some numerical examples of moving and rolling contact of 2D elastic bodies with or without friction, including the bodies with a hole-type defect, are given to show the effectiveness and the accuracy of the presented schemes.
文摘We extend the differential quadrature element method (DQEM) to the buckling analysis of uniformly in-plane loaded functionally graded (FG) plates fully or partially resting on the Pasternak model of elastic support. Material properties of the FG plate are graded in the thickness direction and assumed to obey a power law distribution of the volume fraction of the constituents. To set up the global eigenvalue equation, the plate is divided into sub-domains or elements and the generalized differential quadrature procedure is applied to discretize the governing, boundary and compatibility equations. By assembling discrete equations at all nodal points, the weighting coefficient and force matrices are derived. To validate the accuracy of this method, the results are compared with those of the exact solution and the finite element method. At the end, the effects of different variables and local elastic support arrangements on the buckling load factor are investigated.
基金supported by the National Natural Science Foundation of China (Grants 11471262, 50976003, 51136005)
文摘In this paper, the extended finite element method (XFEM) is adopted to analyze the interaction between a single macroscopic inclusion and a single macroscopic crack as well as that between multiple macroscopic or microscopic defects under thermal/mechanical load. The effects of different shapes of multiple inclusions on the material thermomechanical response are investigated, and the level set method is coupled with XFEM to analyze the interaction of multiple defects. Further, the discretized extended finite element approximations in relation to thermoelastic problems of multiple defects under displacement or temperature field are given. Also, the interfaces of cracks or materials are represented by level set functions, which allow the mesh assignment not to conform to crack or material interfaces. Moreover, stress intensity factors of cracks are obtained by the interaction integral method or the M-integral method, and the stress/strain/stiffness fields are simulated in the case of multiple cracks or multiple inclusions. Finally, some numerical examples are provided to demonstrate the accuracy of our proposed method.