In present study, a simultaneous electrospinning and electrospraying(SEE) process was employed to produce microclusters of TiO2 nanoparticles and interlock them in nanofibrous network. The photocatalytic composite m...In present study, a simultaneous electrospinning and electrospraying(SEE) process was employed to produce microclusters of TiO2 nanoparticles and interlock them in nanofibrous network. The photocatalytic composite membranes(PCMs) were fabricated by electrospraying TiO2 nanoparticle suspension into microcluster form that dispersed and entrapped within nylon-6 electrospun fiber membrane. Three PCMs membrane with TiO2 content of 52.0, 83.6,and 91.7 wt.% were successfully fabricated. The membrane consisted of TiO2 microclusters,ranging in sizes from around 0.3 to 10 μm, distributed uniformly within the nylon-6 nanofibrous network. PCMs photocatalytic activity against Methylene Blue(MB) in aqueous solution showed more than 98% MB removal efficiency after 120 min of photocatalytic oxidation(PCO) for all PCMs. For PCM with the highest TiO2 content tested for 5 PCO cycles, it was found that most of their TiO2 content remained incorporated within the nanofibrous structure. The concept of nanoparticles clusters entrapment with SEE fabrication employed here provide a simple and effective method for reducing detachment of nanostructure phase from nanocomposite membrane.展开更多
A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigate...A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.展开更多
基金supported by the 90th Anniversary of Chulalongkorn University,Rachadapisek Sompote Fund,Chulalongkorn University,through the Nanotec–CU Center of Excellence on Food and AgricultureInternational Program in Hazardous Substance, and Environmental Management Center of Excellence on Hazardous Substance Management(HSM)Chulalongkorn University
文摘In present study, a simultaneous electrospinning and electrospraying(SEE) process was employed to produce microclusters of TiO2 nanoparticles and interlock them in nanofibrous network. The photocatalytic composite membranes(PCMs) were fabricated by electrospraying TiO2 nanoparticle suspension into microcluster form that dispersed and entrapped within nylon-6 electrospun fiber membrane. Three PCMs membrane with TiO2 content of 52.0, 83.6,and 91.7 wt.% were successfully fabricated. The membrane consisted of TiO2 microclusters,ranging in sizes from around 0.3 to 10 μm, distributed uniformly within the nylon-6 nanofibrous network. PCMs photocatalytic activity against Methylene Blue(MB) in aqueous solution showed more than 98% MB removal efficiency after 120 min of photocatalytic oxidation(PCO) for all PCMs. For PCM with the highest TiO2 content tested for 5 PCO cycles, it was found that most of their TiO2 content remained incorporated within the nanofibrous structure. The concept of nanoparticles clusters entrapment with SEE fabrication employed here provide a simple and effective method for reducing detachment of nanostructure phase from nanocomposite membrane.
基金supported by the Scientific Research Project from Hubei Provincial Department of Education(Q20181808)the Research and Innovation Initiatives of Wuhan Polytechnic University(2018J04,2018Y07)~~
文摘A series of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts are successfully constructed via a direct electrospinning technique coupled with an annealing process for the first time. They are investigated comprehensively in terms of crystal structure, morphology, composition, specific surface area, photoelectrochemical properties, photodegradation performance, etc. Compared with binary TiO2/g-C3N4 and single-component photocatalysts, ternary heterojunction photocatalysts show the best photodegradation performance for RhB under stimulated sunlight. This can be attributed to the enlarged specific surface area (111.41 m2/g), the formation of Z-scheme heterojunction, and the high separation migration efficiency of photoexcited charge carriers. A potential Z-scheme mechanism for ternary heterojunction photocatalysts is proposed to elucidate the remarkably ameliorated photocatalytic performance based on active species trapping experiments, PL detection test of hydroxyl radicals, and photoelectrochemical properties.