Electrochemical CO_(2) reduction is a sustainable method for producing fuels and chemicals using renewable energy sources.Sn is a widely employed catalyst for formate production,with its performance closely influenced...Electrochemical CO_(2) reduction is a sustainable method for producing fuels and chemicals using renewable energy sources.Sn is a widely employed catalyst for formate production,with its performance closely influenced by the catalyst ink formulations and reac-tion conditions.The present study explores the influence of catalyst loading,current density,and binder choice on Sn-based CO_(2) reduc-tion systems.Decreasing catalyst loading from 10 to 1.685 mg·cm^(-2) and increasing current density in highly concentrated bicarbonate solutions significantly enhances formate selectivity,achieving 88%faradaic efficiency(FE)at a current density of−30 mA·cm^(-2) with a cathodic potential of−1.22 V vs.reversible hydrogen electrode(RHE)and a catalyst loading of 1.685 mg·cm^(-2).This low-loading strategy not only reduces catalyst costs but also enhances surface utilization and suppresses the hydrogen evolution reaction.Nafion enhances formate production when applied as a surface coating rather than pre-mixed in the ink,as evidenced by improved faradaic efficiency and lower cathodic potentials.However,this performance still does not match that of binder-free systems because Sn-based catalysts intrinsic-ally exhibit high catalytic activity,making the binder contribution less significant.Although modifying the electrode surface with binders leads to blocked active sites and increased resistance,polyvinylidene fluoride(PVDF)remains promising because of its stability,strength,and conductivity,achieving up to 72%FE to formate at−30 mA·cm^(-2) and−1.66 V vs.RHE.The findings of this research reveal method-ologies for optimizing the catalyst ink formulations and binder utilization to enhance the conversion of CO_(2) to formate,thereby offering crucial insights for the development of a cost-efficient catalyst for high-current-density operations.展开更多
Metallene has been widely considered as an advanced electrocatalytic material due to its large specific surface area and highly active reaction sites.Herein,we design and synthesize ultrathin rhodium metallene(Rh ML)w...Metallene has been widely considered as an advanced electrocatalytic material due to its large specific surface area and highly active reaction sites.Herein,we design and synthesize ultrathin rhodium metallene(Rh ML)with abundant wrinkles to supply surface-strained Rh sites for driving acetonitrile electroreduction to ethylamine(AER).The electrochemical tests indicate that Rh ML shows an ethylamine yield rate of 137.1 mmol gcat^(-1) h^(-1) in an acidic solution,with stability lasting up to 200 h.Theoretical calculations reveal that Rh ML with wrinkle-induced compressive strain not only shows a lower energy barrier in the rate-determining step but also facilitates the ethylamine desorption process compared to wrinkle-free Rh ML and commercial Rh black.The assembled electrolyzer with bifunctional Rh ML shows an electrolysis voltage of 0.41 V at 10 mA cm^(-2),enabling simultaneous ethylamine production and hydrazine waste treatment.Furthermore,the voltage of an assembled hybrid zinc-acetonitrile battery can effectively drive this electrolyzer to achieve the dual AER process.This study provides guidance for improving the catalytic efficiency of surface atoms in two-dimensional materials,as well as the electrochemical synthesis technology for series-connected battery-electrolyzer systems.展开更多
Electrochemical reduction of carbon dioxide(CO_(2)RR)is a promising approach to complete the carbon cycle and potentially convert CO_(2)into valuable chemicals and fuels.Cu is unique among transition metals in its abi...Electrochemical reduction of carbon dioxide(CO_(2)RR)is a promising approach to complete the carbon cycle and potentially convert CO_(2)into valuable chemicals and fuels.Cu is unique among transition metals in its ability to catalyze the CO_(2)RR and produce multi-carbon products.However,achieving high selectivity for C2+products is challenging for copper-based catalysts,as C–C coupling reactions proceed slowly.Herein,a surface modification strategy involving grafting long alkyl chains onto copper nanowires(Cu NWs)has been proposed to regulate the electronic structure of Cu surface,which facilitates*CO-*CO coupling in the CO_(2)RR.The hydrophobicity of the catalysts increases greatly after the introduction of long alkyl chains,therefore the hydrogen evolution reaction(HER)has been inhibited effectively.Such surface modification approach proves to be highly efficient and universal,with the Faradaic efficiency(FE)of C_(2)H_(4) up to 53%for the optimized Cu–SH catalyst,representing a significant enhancement compared to the pristine Cu NWs(30%).In-situ characterizations and theoretical calculations demonstrate that the different terminal groups of the grafted octadecyl chains can effectively regulate the charge density of Cu NWs interface and change the adsorption configuration of*CO intermediate.The top-adsorbed*CO intermediates(*COtop)on Cu–SH catalytic interface endow Cu–SH with the highest charge density,which effectively lowers the reaction energy barrier for*CO-*CO coupling,promoting the formation of the*OCCO intermediate,thereby enhancing the selectivity towards C_(2)H_(4).This study provides a promising method for designing efficient Cu-based catalysts with high catalytic activity and selectivity towards C2H4.展开更多
Electrochemical CO_(2) reduction reaction(CO_(2)RR),driven by renewable energy,offers a promising solution to mitigate increasing CO_(2) emissions and establish a carbon-neutral cycle.Copper is a highly selective and ...Electrochemical CO_(2) reduction reaction(CO_(2)RR),driven by renewable energy,offers a promising solution to mitigate increasing CO_(2) emissions and establish a carbon-neutral cycle.Copper is a highly selective and active catalyst for CO_(2)RR but suffers from structural reconstruction challenges.Hybrid organic/inorganic materials address these issues by offering customizable compositions and interfaces.Recently,Buonsanti’s team developed hybrid Cu@AlOx nanocrystals with tunable alumina shells via a colloidal atomic layer deposition approach,achieving stable and selective methane production during CO_(2)RR.Mechanistic studies reveal that the alumina shell stabilizes oxidized copper species through Cu^(2+)-O-Al motifs coordinated with AlO_(4) Lewis acid sites,reducing copper dissolution and structural reconstruction.This study provides key insights into the mechanism underlying stabilization,highlighting the critical role of Lewis acidity in preserving the structural integrity of the catalyst.This highlight review aims to inspire the development of other high-performance and stable catalysts through colloidal atomic layer deposition strategies.展开更多
The atomic-level exploration of structure-property correlations poses significant challenges in establishing precise design principles for electrocatalysts targeting efficient CO_(2)conversion.This study demonstrates ...The atomic-level exploration of structure-property correlations poses significant challenges in establishing precise design principles for electrocatalysts targeting efficient CO_(2)conversion.This study demonstrates how controlled exposure of metal sites governs CO_(2)electroreduction performance through two octanuclear bismuth-oxo clusters with distinct architectures.The Bi_(8)-DMF cluster,constructed using tert–butylthiacalix[4]arene(TC4A)as the sole ligand,features two surface-exposed Bi active sites,while the dual-ligand Bi_(8)-Fc(with TC4A/ferrocene carboxylate)forms a fully encapsulated structure.Electrocatalytic tests reveal Bi_(8)-DMF achieves exceptional formate selectivity(>90%Faradaic efficiency)across a broad potential window(-0.9 V to-1.6 V vs.RHE)with 20 h stability,outperforming Bi_(8)-Fc(60%efficiency at-1.5 V).Theoretical calculations attribute Bi_(8)-DMF's superiority to exposed Bi sites that stabilize the critical*OCHO intermediate via optimized orbital interactions.This work provides crucial guidance for polynuclear catalyst design:moderate exposure of metal active sites significantly enhances CO_(2)reduction performance.展开更多
The large current density of electrochemical CO_(2)reduction towards industrial application is challenging.Herein,without strong acid and reductant,the synthesized BiVO_(4)with abundant oxygen vacancies(Ovs)exhibited ...The large current density of electrochemical CO_(2)reduction towards industrial application is challenging.Herein,without strong acid and reductant,the synthesized BiVO_(4)with abundant oxygen vacancies(Ovs)exhibited a high formate Faradaic efficiency(FE)of 97.45%(-0.9 V)and a large partial current density of-45.82 mA/cm^(2)(-1.2 V).The good performance benefits from the reconstruction of BiVO_(4)to generate active metal Bi sites,which results in the electron redistribution to boost the OCHO∗formation.In flow cells,near industrial current density of 183.94 mA/cm^(2)was achieved,with the FE of formate above 95%from 20mA/cm^(2)to 180mA/cm^(2).Our work provides a facily synthesized BiVO_(4)precatalyst for CO_(2)electroreduction.展开更多
Developing Sn,nitrogen-doped carbon catalysts(Sn-NC)for efficient CO_(2) electroreduction(CO_(2)RR)to CO remains a great challenge.Here,we employed a defective hierarchical porous graphene nanomesh to anchor the singl...Developing Sn,nitrogen-doped carbon catalysts(Sn-NC)for efficient CO_(2) electroreduction(CO_(2)RR)to CO remains a great challenge.Here,we employed a defective hierarchical porous graphene nanomesh to anchor the single atomic tin-nitrogen sites(A-Sn-NGM)for effective CO_(2) electroreduction.The synthesized A-Sn-NGM typically showed remarkable CO_(2)RR activity towards CO production,which achieved a maximum CO Faradaic efficiency(FECO)of 98.7%and a turnover frequency of 5117.4 h^(−1) at a potential of−0.6 V(vs.RHE).Further analysis proves that the increased activity to CO production of A-Sn-NGM derives from the enlarged roughness and enhanced intrinsic activity.Density-functional theory(DFT)calculations indicate that the adjacent carbon defects anchored Sn-Nx coordination sites can markedly inhibit the competing hydrogen evolution reaction(HER)and lower the energy barrier for the formation of *COOH intermediates as compared to bulk Sn-Nx sites without carbon defects.This work provides a reliable method by engineering the carbon support to improve the CO_(2)RR performance for single-atom catalysts.展开更多
Leveraging the interplay between the metal component and the supporting material represents a cornerstone strategy for augmenting electrocatalytic efficiency,e.g.,electrocatalytic CO_(2)reduction reaction(CO_(2)RR).He...Leveraging the interplay between the metal component and the supporting material represents a cornerstone strategy for augmenting electrocatalytic efficiency,e.g.,electrocatalytic CO_(2)reduction reaction(CO_(2)RR).Herein,we employ freestanding porous carbon fibers(PCNF)as an efficacious and stable support for the uniformly distributed SnO_(2)nanoparticles(SnO_(2)PCNF),thereby capitalizing on the synergistic support effect that arises from their strong interaction.On one hand,the interaction between the SnO_(2)nanoparticles and the carbon support optimizes the electronic configuration of the active centers.This interaction leads to a noteworthy shift of the d-band center toward stronger intermediate adsorption energy,consequently lowering the energy barrier associated with CO_(2)reduction.As a result,the Sn O_(2)PCNF realizes a remarkable CO_(2)RR performance with excellent selectivity towards formate(98.1%).On the other hand,the porous carbon fibers enable the uniform and stable dispersion of SnO_(2)nanoparticles,and this superior porous structure of carbon supports can also facilitate the exposure of the SnO_(2)nanoparticles on the reaction interface to a great extent.Consequently,adequate contact between active sites,reactants,and electrolytes can significantly increase the metal utilization,eventually bringing forth a remarkable7.09 A/mg mass activity.This work might provide a useful idea for improving the utilization rate of metals in numerous electrocatalytic reactions.展开更多
Copper(Cu)-based catalysts show significant potential for producing high value-added C_(2+)products in electrocatalytic CO_(2)/CO reduction reactions(CO(2)RR).However,the structural reconfiguration during operation po...Copper(Cu)-based catalysts show significant potential for producing high value-added C_(2+)products in electrocatalytic CO_(2)/CO reduction reactions(CO(2)RR).However,the structural reconfiguration during operation poses substantial challenges in identifying the intrinsic catalytic active site,especially under similar mass transport conditions.Herein,three typical and commercial Cu-based catalysts(Cu,CuO,and Cu_(2)O)are chosen as representatives to elucidate the structure-activity relationship of CORR in the membrane electrode assembly electrolyzer.Notably,only the Cu catalyst demonstrates the most suppression of hydrogen evolution reaction,thus achieving the highest FE of 86.7% for C_(2+)products at a current density of 500 mA cm^(-2) and maintaining a stable electrolysis over 110 h at a current of 200 mA cm^(-2).The influence of chemical valence state of Cu,electrochemical surface area,and local pH were firstly investigated and ruled out for the significant FE differences.Finally,based on the structure analysis from high resolution transmission electron microscope,OH-adsorption,in situ infrared spectroscopy and density functional theory calculations,it is suggested that the asymmetric C-C coupling(via ^(*)CHO and ^(*)CO)is the most probable reaction pathway for forming C_(2+)products,with Cu(100)-dominant grain boundaries(GBs)being the most favorable active sites.These findings provide deeper insights into the synergistic relationship between crystal facets and GBs in electrocatalytic systems.展开更多
Pulsed electrolysis for CO_(2)reduction reaction has emerged as an effective method to enhance catalyst efficiency and optimize product selectivity.However,challenges remain in understanding the mechanisms of surface ...Pulsed electrolysis for CO_(2)reduction reaction has emerged as an effective method to enhance catalyst efficiency and optimize product selectivity.However,challenges remain in understanding the mechanisms of surface transformation under pulsed conditions.In this study,using in-situ time-resolved surface-enhanced Raman spectroscopy and differential electrochemical mass spectroscopy,we found local pH at the surface and Cu–O–C species that was generated during the anodic pulse played a key role in pulsed electrolysis.During the pulsed oxidation,an oxidation layer first formed,depleting OH–and lowering the local pH.When the pH was below 8.4,HCO_(3)–transformed the oxidation layer to a nanometer-thick Cu–O–C species,which is a highly reactive catalyst.In the reduction pulse,about 7.4%of the surface Cu–O–C was transformed into CO and CuOx species,enhancing CO_(2)reduction activity.Even in Ar-saturated 0.1 M KHCO_(3),through a Cu–O–C intermediate,a Faradaic efficiency of 0.17%for bicarbonate reduction to CO was observed.Our findings highlight the crucial role of the anodic pulse process in improving CO_(2)reduction activity.展开更多
Although the potential of microenvironment modulation to enhance electricity-driven CO_(2)reduction has been recognized,substantial challenges remain,particularly in effectively integrating multiple favorable microenv...Although the potential of microenvironment modulation to enhance electricity-driven CO_(2)reduction has been recognized,substantial challenges remain,particularly in effectively integrating multiple favorable microenvironments.Herein,we synthesize CeO_(2)with abundant oxygen vacancies to effectively disperse and anchor small-sized Ag_(2)O nanoparticles(Ag_(2)O/Vo-CeO_(2)).Vo-CeO_(2)acts as a multifunctional modulator,regulating both the reaction microenvironment and the electronic structure of Ag sites,thereby boosting CO_(2)reduction(CO_(2)RR)efficiency.Its strong CO_(2)adsorption and H_(2)O dissociation capabilities facilitate the supply of CO_(2)and active^(*)H species to Ag sites.The electron-withdrawing effect of VoCeO_(2)induces polarization at interfacial Ag sites,generating Agd+species that enhance CO_(2)affinity and activation.Moreover,the electronic coupling between Vo-CeO_(2)and Ag upshifts the d-band center of Ag,optimizing COOH binding and lowering the thermodynamic barrier of the potential-determining step.Ag_(2)O/Vo-CeO_(2)delivers a consistently high Faraday efficiency(FE)of over 99% for CO production even at industrially current density(up to 365 mA cm^(-2)herein),and the operational potential window spans an astonishing 1700 m V(FE>95%).The unprecedented activity,which overcomes the trade-off between the selectivity and current density for CO_(2)RR,outperforms state-of-the-art Ag-based catalysts reported to date.These findings offer a promising pathway to develop robust CO_(2)RR catalysts and present an engineering strategy for constructing the optimal microenvironment of active sites via the synergistic effects of multifunctional modulation.展开更多
The Ni single-atom catalyst dispersed on nitrogen doped graphene support has attracted much interest due to the high selectivity in electro-catalyzing CO_(2)reduction to CO,yet the chemical inertness of the metal cent...The Ni single-atom catalyst dispersed on nitrogen doped graphene support has attracted much interest due to the high selectivity in electro-catalyzing CO_(2)reduction to CO,yet the chemical inertness of the metal center renders it to exhibit electrochemical activity only under high overpotentials.Herein,we report P-and S-doped Ni single-atom catalysts,i.e.symmetric Ni_(1)/PN_(4)and asymmetric Ni1/SN_(3)C can exhibit high catalytic activity of CO_(2)reduction with stable potential windows.It is revealed that the key intermediate*COOH in CO_(2)electroreduction is stabilized by heteroatom doping,which stems from the upward shift of the axial d_(z2)orbital of the active metal Ni atom.Furthermore,we investigate the potential-dependent free energetics and dynamic properties at the electrochemical interface on the Ni1/SN3C catalyst using ab initio molecular dynamics simulations with a full explicit solvent model.Based on the potential-dependent microkinetic model,we predict that S-atom doped Ni SAC shifts the onset potential of CO_(2)electroreduction from–0.88 to–0.80 V vs.RHE,exhibiting better activity.Overall,this work provides an in-depth understanding of structure-activity relationships and atomic-level electrochemical interfaces of catalytic systems,and offers insights into the rational design of heteroatom-doped catalysts for targeted catalysis.展开更多
By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we rep...By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR.展开更多
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-...Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.展开更多
Dual-atom catalysts(DACs)have emerged as potential catalysts for effective electroreduction of CO_(2)due to their high atom utilization efficiency and multiple active sites.However,the screening of DACs remains a chal...Dual-atom catalysts(DACs)have emerged as potential catalysts for effective electroreduction of CO_(2)due to their high atom utilization efficiency and multiple active sites.However,the screening of DACs remains a challenge due to the large number of possible combinations,making exhaustive experimental or computational screening a daunting task.In this study,a density functional theory(DFT)-based machine learning(ML)-accelerated(DFT-ML)hybrid approach was developed to test a set of 406 dual transition metal catalysts on N-doped graphene(NG)for the electroreduction of CO_(2)to HCOOH.The results showed that the ML algorithms can successfully capture the relationship between the descriptors of the DACs(inputs)and the limiting potential for HCOOH generation(output).Of the four ML algorithms studied in this work,the feedforward neural network model achieved the highest prediction accuracy(the highest correlation coefficient(R^(2))of 0.960 and the lowest root mean square error(RMSE)of 0.319 eV on the test set)and the predicted results were verified by DFT calculations with an average absolute error of 0.14 eV.The DFT-ML approach identified Co-Co-NG and Ir-Fe-NG as the most active and stable electrocatalysts for the electrochemical reduction of CO_(2)to HCOOH.The DFT-ML hybrid approach exhibits exceptional prediction accuracy while enabling a significant reduction in screening time by an impressive 64%compared to conventional DFT-only calculations.These results demonstrate the immense potential of using ML methods to accelerate the screening and rational design of efficient catalysts for various energy and environmental applications.展开更多
Engineering the desired dual metal sites to realize C-C coupling of CO_(2)is of great importance for the practical applications of CO_(2)electroreduction reaction(CER).Herein,an efficient strategy for constructing het...Engineering the desired dual metal sites to realize C-C coupling of CO_(2)is of great importance for the practical applications of CO_(2)electroreduction reaction(CER).Herein,an efficient strategy for constructing heterogeneous Pt^(δ+)-Cu^(δ+)dual sites to strengthen the generation and coupling of*CO and*CHO(or*COH)during CER process is presented in this work.The radiilarger Pt not only stabilizes the Cu^(δ+)ut also induces a tensile strain in Pt^(δ+)-Cu^(δ+)dual sites.The obtained Pt^(δ+)-Cu^(δ+)dual sites achieve a total Faradaic efficiency and current density of C2products with 70.9%and586.9 mA·cm-2at-1.20 V(vs.RHE),which is higher than that of Cu^(δ+)single site(55.4%,286.9 mA·cm^(-2)).The in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)reveals that the Pt^(δ+)-Cu^(δ+)dual sites can promote the generation of C1intermediates(such as*CO,*COOH,*COH,and*CHO)and C-C coupling.Additional in situ surface-enhanced Raman spectra demonstrate that Pt^(δ+)Cu^(δ+)dual sites can induce the generation of the high-frequency peak for*CO_(atop),thus accelerating the C-C coupling.This work provides a promising avenue for stabilizing and enhancing the performance of Cu^(δ+)sites toward CER.展开更多
The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving t...The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.展开更多
The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in ele...The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation.展开更多
The electrocatalytic synthesis of imines through the reductive imination of nitroarenes with aldehydes is a facile,environmentally friendly,and valuable process.In this study,high selectivity electrosynthesis of imine...The electrocatalytic synthesis of imines through the reductive imination of nitroarenes with aldehydes is a facile,environmentally friendly,and valuable process.In this study,high selectivity electrosynthesis of imines was realized through the electrocatalytic C-N coupling reaction between nitroarenes and aryl aldehydes on Co_(9)S_(8)nanoflowers with rich sulfur vacancies(Co_(9)S_(8)-Vs).Comparative experiments revealed that positively charged sulfur vacancies play a pivotal role in boosting catalytic selectivity towards imines.Electron-deficient sulfur vacancies intensified the adsorption of negatively charged Ph-NO_(2),thereby enhancing the conversion rate of the electrochemical nitrobenzene-reduction reaction(eNB-RR).Simultaneously,sulfur vacancies augmented the adsorption capability of negatively charged Ph-CHO,enriching Ph-CHO species at the electrode interface and expediting the Schiff base condensation reaction rate.The experimental results show that the reaction conditions can satisfy the different nitroarenes and aryl aldehydes in the electrocatalytic aqueous-phase system under mild conditions to obtain the corresponding imine products in high selectivity.This study provides a facile and environmentally friendly pathway for future electrocatalytic synthesis of imine.展开更多
Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer w...Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts.展开更多
基金financially supported by a PhD Grant from VITO’s Strategic Research Funds(No.2310345).
文摘Electrochemical CO_(2) reduction is a sustainable method for producing fuels and chemicals using renewable energy sources.Sn is a widely employed catalyst for formate production,with its performance closely influenced by the catalyst ink formulations and reac-tion conditions.The present study explores the influence of catalyst loading,current density,and binder choice on Sn-based CO_(2) reduc-tion systems.Decreasing catalyst loading from 10 to 1.685 mg·cm^(-2) and increasing current density in highly concentrated bicarbonate solutions significantly enhances formate selectivity,achieving 88%faradaic efficiency(FE)at a current density of−30 mA·cm^(-2) with a cathodic potential of−1.22 V vs.reversible hydrogen electrode(RHE)and a catalyst loading of 1.685 mg·cm^(-2).This low-loading strategy not only reduces catalyst costs but also enhances surface utilization and suppresses the hydrogen evolution reaction.Nafion enhances formate production when applied as a surface coating rather than pre-mixed in the ink,as evidenced by improved faradaic efficiency and lower cathodic potentials.However,this performance still does not match that of binder-free systems because Sn-based catalysts intrinsic-ally exhibit high catalytic activity,making the binder contribution less significant.Although modifying the electrode surface with binders leads to blocked active sites and increased resistance,polyvinylidene fluoride(PVDF)remains promising because of its stability,strength,and conductivity,achieving up to 72%FE to formate at−30 mA·cm^(-2) and−1.66 V vs.RHE.The findings of this research reveal method-ologies for optimizing the catalyst ink formulations and binder utilization to enhance the conversion of CO_(2) to formate,thereby offering crucial insights for the development of a cost-efficient catalyst for high-current-density operations.
基金supported by the National Natural Science Foundation of China(22272103)the National Natural Science Foundation of China for the Youth(22309108,22202076)+3 种基金the Science and Technology Innovation Team of Shaanxi Province(2023-CX-TD-27)the China Postdoctoral Science Foundation(2023TQ0204)the Young Scientist Initiative Project of School of Materials Science and Engineering at Shaanxi Normal University(2024YSIP-MSE-SNNU008)Sanqin Scholars Innovation Teams in Shaanxi Province in China.
文摘Metallene has been widely considered as an advanced electrocatalytic material due to its large specific surface area and highly active reaction sites.Herein,we design and synthesize ultrathin rhodium metallene(Rh ML)with abundant wrinkles to supply surface-strained Rh sites for driving acetonitrile electroreduction to ethylamine(AER).The electrochemical tests indicate that Rh ML shows an ethylamine yield rate of 137.1 mmol gcat^(-1) h^(-1) in an acidic solution,with stability lasting up to 200 h.Theoretical calculations reveal that Rh ML with wrinkle-induced compressive strain not only shows a lower energy barrier in the rate-determining step but also facilitates the ethylamine desorption process compared to wrinkle-free Rh ML and commercial Rh black.The assembled electrolyzer with bifunctional Rh ML shows an electrolysis voltage of 0.41 V at 10 mA cm^(-2),enabling simultaneous ethylamine production and hydrazine waste treatment.Furthermore,the voltage of an assembled hybrid zinc-acetonitrile battery can effectively drive this electrolyzer to achieve the dual AER process.This study provides guidance for improving the catalytic efficiency of surface atoms in two-dimensional materials,as well as the electrochemical synthesis technology for series-connected battery-electrolyzer systems.
文摘Electrochemical reduction of carbon dioxide(CO_(2)RR)is a promising approach to complete the carbon cycle and potentially convert CO_(2)into valuable chemicals and fuels.Cu is unique among transition metals in its ability to catalyze the CO_(2)RR and produce multi-carbon products.However,achieving high selectivity for C2+products is challenging for copper-based catalysts,as C–C coupling reactions proceed slowly.Herein,a surface modification strategy involving grafting long alkyl chains onto copper nanowires(Cu NWs)has been proposed to regulate the electronic structure of Cu surface,which facilitates*CO-*CO coupling in the CO_(2)RR.The hydrophobicity of the catalysts increases greatly after the introduction of long alkyl chains,therefore the hydrogen evolution reaction(HER)has been inhibited effectively.Such surface modification approach proves to be highly efficient and universal,with the Faradaic efficiency(FE)of C_(2)H_(4) up to 53%for the optimized Cu–SH catalyst,representing a significant enhancement compared to the pristine Cu NWs(30%).In-situ characterizations and theoretical calculations demonstrate that the different terminal groups of the grafted octadecyl chains can effectively regulate the charge density of Cu NWs interface and change the adsorption configuration of*CO intermediate.The top-adsorbed*CO intermediates(*COtop)on Cu–SH catalytic interface endow Cu–SH with the highest charge density,which effectively lowers the reaction energy barrier for*CO-*CO coupling,promoting the formation of the*OCCO intermediate,thereby enhancing the selectivity towards C_(2)H_(4).This study provides a promising method for designing efficient Cu-based catalysts with high catalytic activity and selectivity towards C2H4.
基金supported by the National Natural Science Foundation of China(No.22101289)Hundred Talents Programs in Chinese Academy of Science,and the Ningbo S&T Innovation 2025 Major Special Program(No.2022Z205).
文摘Electrochemical CO_(2) reduction reaction(CO_(2)RR),driven by renewable energy,offers a promising solution to mitigate increasing CO_(2) emissions and establish a carbon-neutral cycle.Copper is a highly selective and active catalyst for CO_(2)RR but suffers from structural reconstruction challenges.Hybrid organic/inorganic materials address these issues by offering customizable compositions and interfaces.Recently,Buonsanti’s team developed hybrid Cu@AlOx nanocrystals with tunable alumina shells via a colloidal atomic layer deposition approach,achieving stable and selective methane production during CO_(2)RR.Mechanistic studies reveal that the alumina shell stabilizes oxidized copper species through Cu^(2+)-O-Al motifs coordinated with AlO_(4) Lewis acid sites,reducing copper dissolution and structural reconstruction.This study provides key insights into the mechanism underlying stabilization,highlighting the critical role of Lewis acidity in preserving the structural integrity of the catalyst.This highlight review aims to inspire the development of other high-performance and stable catalysts through colloidal atomic layer deposition strategies.
基金supported by the Natural Science Foundation of Hunan Province(No.2023JJ30650)the Central South University Innovation-Driven Research Programme(No.2023CXQD061)。
文摘The atomic-level exploration of structure-property correlations poses significant challenges in establishing precise design principles for electrocatalysts targeting efficient CO_(2)conversion.This study demonstrates how controlled exposure of metal sites governs CO_(2)electroreduction performance through two octanuclear bismuth-oxo clusters with distinct architectures.The Bi_(8)-DMF cluster,constructed using tert–butylthiacalix[4]arene(TC4A)as the sole ligand,features two surface-exposed Bi active sites,while the dual-ligand Bi_(8)-Fc(with TC4A/ferrocene carboxylate)forms a fully encapsulated structure.Electrocatalytic tests reveal Bi_(8)-DMF achieves exceptional formate selectivity(>90%Faradaic efficiency)across a broad potential window(-0.9 V to-1.6 V vs.RHE)with 20 h stability,outperforming Bi_(8)-Fc(60%efficiency at-1.5 V).Theoretical calculations attribute Bi_(8)-DMF's superiority to exposed Bi sites that stabilize the critical*OCHO intermediate via optimized orbital interactions.This work provides crucial guidance for polynuclear catalyst design:moderate exposure of metal active sites significantly enhances CO_(2)reduction performance.
基金financially supported by the Fundamental Research Funds for the Central Universities of Central South University(No.2022ZZTS0579).
文摘The large current density of electrochemical CO_(2)reduction towards industrial application is challenging.Herein,without strong acid and reductant,the synthesized BiVO_(4)with abundant oxygen vacancies(Ovs)exhibited a high formate Faradaic efficiency(FE)of 97.45%(-0.9 V)and a large partial current density of-45.82 mA/cm^(2)(-1.2 V).The good performance benefits from the reconstruction of BiVO_(4)to generate active metal Bi sites,which results in the electron redistribution to boost the OCHO∗formation.In flow cells,near industrial current density of 183.94 mA/cm^(2)was achieved,with the FE of formate above 95%from 20mA/cm^(2)to 180mA/cm^(2).Our work provides a facily synthesized BiVO_(4)precatalyst for CO_(2)electroreduction.
基金supported by the National Natural Science Foundation of China(Nos.22208021 and 52225003)the 5·5 Engineering Research&Innovation Team Project of Beijing Forestry University(No.BLRC2023B04).
文摘Developing Sn,nitrogen-doped carbon catalysts(Sn-NC)for efficient CO_(2) electroreduction(CO_(2)RR)to CO remains a great challenge.Here,we employed a defective hierarchical porous graphene nanomesh to anchor the single atomic tin-nitrogen sites(A-Sn-NGM)for effective CO_(2) electroreduction.The synthesized A-Sn-NGM typically showed remarkable CO_(2)RR activity towards CO production,which achieved a maximum CO Faradaic efficiency(FECO)of 98.7%and a turnover frequency of 5117.4 h^(−1) at a potential of−0.6 V(vs.RHE).Further analysis proves that the increased activity to CO production of A-Sn-NGM derives from the enlarged roughness and enhanced intrinsic activity.Density-functional theory(DFT)calculations indicate that the adjacent carbon defects anchored Sn-Nx coordination sites can markedly inhibit the competing hydrogen evolution reaction(HER)and lower the energy barrier for the formation of *COOH intermediates as compared to bulk Sn-Nx sites without carbon defects.This work provides a reliable method by engineering the carbon support to improve the CO_(2)RR performance for single-atom catalysts.
基金supported by the National Natural Science Foundation of China(Nos.22172099,U21A20312)Guangdong Basic and Applied Basic Research Foundation(Nos.2023A1515012776,2022B1515120084)the Shenzhen Science and Technology Program(No.RCYX20200714114535052)。
文摘Leveraging the interplay between the metal component and the supporting material represents a cornerstone strategy for augmenting electrocatalytic efficiency,e.g.,electrocatalytic CO_(2)reduction reaction(CO_(2)RR).Herein,we employ freestanding porous carbon fibers(PCNF)as an efficacious and stable support for the uniformly distributed SnO_(2)nanoparticles(SnO_(2)PCNF),thereby capitalizing on the synergistic support effect that arises from their strong interaction.On one hand,the interaction between the SnO_(2)nanoparticles and the carbon support optimizes the electronic configuration of the active centers.This interaction leads to a noteworthy shift of the d-band center toward stronger intermediate adsorption energy,consequently lowering the energy barrier associated with CO_(2)reduction.As a result,the Sn O_(2)PCNF realizes a remarkable CO_(2)RR performance with excellent selectivity towards formate(98.1%).On the other hand,the porous carbon fibers enable the uniform and stable dispersion of SnO_(2)nanoparticles,and this superior porous structure of carbon supports can also facilitate the exposure of the SnO_(2)nanoparticles on the reaction interface to a great extent.Consequently,adequate contact between active sites,reactants,and electrolytes can significantly increase the metal utilization,eventually bringing forth a remarkable7.09 A/mg mass activity.This work might provide a useful idea for improving the utilization rate of metals in numerous electrocatalytic reactions.
文摘Copper(Cu)-based catalysts show significant potential for producing high value-added C_(2+)products in electrocatalytic CO_(2)/CO reduction reactions(CO(2)RR).However,the structural reconfiguration during operation poses substantial challenges in identifying the intrinsic catalytic active site,especially under similar mass transport conditions.Herein,three typical and commercial Cu-based catalysts(Cu,CuO,and Cu_(2)O)are chosen as representatives to elucidate the structure-activity relationship of CORR in the membrane electrode assembly electrolyzer.Notably,only the Cu catalyst demonstrates the most suppression of hydrogen evolution reaction,thus achieving the highest FE of 86.7% for C_(2+)products at a current density of 500 mA cm^(-2) and maintaining a stable electrolysis over 110 h at a current of 200 mA cm^(-2).The influence of chemical valence state of Cu,electrochemical surface area,and local pH were firstly investigated and ruled out for the significant FE differences.Finally,based on the structure analysis from high resolution transmission electron microscope,OH-adsorption,in situ infrared spectroscopy and density functional theory calculations,it is suggested that the asymmetric C-C coupling(via ^(*)CHO and ^(*)CO)is the most probable reaction pathway for forming C_(2+)products,with Cu(100)-dominant grain boundaries(GBs)being the most favorable active sites.These findings provide deeper insights into the synergistic relationship between crystal facets and GBs in electrocatalytic systems.
基金financially supported by the National Natural Science Foundation of China (52173173, 22403047)Natural Science Foundation of Jiangsu Province (BK20220051)+2 种基金Jiangsu Province Carbon Peak and Neutrality Innovation Program (Industry tackling on prospect and key technology) (BE2022031-4, BE2022002-3)The Natural Foundation of Jiangsu Higher Education Institutions of China (23KJB430021)State Key Laboratory of Materials-Oriented Chemical Engineering (No.SKL-MCE-24A16)
文摘Pulsed electrolysis for CO_(2)reduction reaction has emerged as an effective method to enhance catalyst efficiency and optimize product selectivity.However,challenges remain in understanding the mechanisms of surface transformation under pulsed conditions.In this study,using in-situ time-resolved surface-enhanced Raman spectroscopy and differential electrochemical mass spectroscopy,we found local pH at the surface and Cu–O–C species that was generated during the anodic pulse played a key role in pulsed electrolysis.During the pulsed oxidation,an oxidation layer first formed,depleting OH–and lowering the local pH.When the pH was below 8.4,HCO_(3)–transformed the oxidation layer to a nanometer-thick Cu–O–C species,which is a highly reactive catalyst.In the reduction pulse,about 7.4%of the surface Cu–O–C was transformed into CO and CuOx species,enhancing CO_(2)reduction activity.Even in Ar-saturated 0.1 M KHCO_(3),through a Cu–O–C intermediate,a Faradaic efficiency of 0.17%for bicarbonate reduction to CO was observed.Our findings highlight the crucial role of the anodic pulse process in improving CO_(2)reduction activity.
基金the support of this research by the Nat ional Natural Science Foundation of China(22179035)the Hei-longjiang Provincial Natural Science Foundation Joint Fund Cultivation Project(PL2024B012)the Fundamental Research Funds for the Universities of Heilongjiang Province(2023-KYYWF-1440)。
文摘Although the potential of microenvironment modulation to enhance electricity-driven CO_(2)reduction has been recognized,substantial challenges remain,particularly in effectively integrating multiple favorable microenvironments.Herein,we synthesize CeO_(2)with abundant oxygen vacancies to effectively disperse and anchor small-sized Ag_(2)O nanoparticles(Ag_(2)O/Vo-CeO_(2)).Vo-CeO_(2)acts as a multifunctional modulator,regulating both the reaction microenvironment and the electronic structure of Ag sites,thereby boosting CO_(2)reduction(CO_(2)RR)efficiency.Its strong CO_(2)adsorption and H_(2)O dissociation capabilities facilitate the supply of CO_(2)and active^(*)H species to Ag sites.The electron-withdrawing effect of VoCeO_(2)induces polarization at interfacial Ag sites,generating Agd+species that enhance CO_(2)affinity and activation.Moreover,the electronic coupling between Vo-CeO_(2)and Ag upshifts the d-band center of Ag,optimizing COOH binding and lowering the thermodynamic barrier of the potential-determining step.Ag_(2)O/Vo-CeO_(2)delivers a consistently high Faraday efficiency(FE)of over 99% for CO production even at industrially current density(up to 365 mA cm^(-2)herein),and the operational potential window spans an astonishing 1700 m V(FE>95%).The unprecedented activity,which overcomes the trade-off between the selectivity and current density for CO_(2)RR,outperforms state-of-the-art Ag-based catalysts reported to date.These findings offer a promising pathway to develop robust CO_(2)RR catalysts and present an engineering strategy for constructing the optimal microenvironment of active sites via the synergistic effects of multifunctional modulation.
文摘The Ni single-atom catalyst dispersed on nitrogen doped graphene support has attracted much interest due to the high selectivity in electro-catalyzing CO_(2)reduction to CO,yet the chemical inertness of the metal center renders it to exhibit electrochemical activity only under high overpotentials.Herein,we report P-and S-doped Ni single-atom catalysts,i.e.symmetric Ni_(1)/PN_(4)and asymmetric Ni1/SN_(3)C can exhibit high catalytic activity of CO_(2)reduction with stable potential windows.It is revealed that the key intermediate*COOH in CO_(2)electroreduction is stabilized by heteroatom doping,which stems from the upward shift of the axial d_(z2)orbital of the active metal Ni atom.Furthermore,we investigate the potential-dependent free energetics and dynamic properties at the electrochemical interface on the Ni1/SN3C catalyst using ab initio molecular dynamics simulations with a full explicit solvent model.Based on the potential-dependent microkinetic model,we predict that S-atom doped Ni SAC shifts the onset potential of CO_(2)electroreduction from–0.88 to–0.80 V vs.RHE,exhibiting better activity.Overall,this work provides an in-depth understanding of structure-activity relationships and atomic-level electrochemical interfaces of catalytic systems,and offers insights into the rational design of heteroatom-doped catalysts for targeted catalysis.
基金supported by the Fundamental Research Funds for the Central Universities(22120230104).
文摘By manipulating the distribution of surface electrons,defect engineering enables effective control over the adsorption energy between adsorbates and active sites in the CO_(2)reduction reaction(CO_(2)RR).Herein,we report a hollow indium oxide nanotube containing both oxygen vacancy and sulfur doping(V_o-Sx-In_(2)O_(3))for improved CO_(2)-to-HCOOH electroreduction and Zn-CO_(2)battery.The componential synergy significantly reduces the*OCHO formation barrier to expedite protonation process and creates a favorable electronic micro-environment for*HCOOH desorption.As a result,the CO_(2)RR performance of Vo-Sx-In_(2)O_(3)outperforms Pure-In_(2)O_(3)and V_o-In_(2)O_(3),where V_o-S53-In_(2)O_(3)exhibits a maximal HCOOH Faradaic efficiency of 92.4%at-1,2 V vs.reversible hydrogen electrode(RHE)in H-cell and above 92%over a wide window potential with high current density(119.1 mA cm^(-2)at-1.1 V vs.RHE)in flow cell.Furthermore,the rechargeable Zn-CO_(2)battery utilizing V_o-S53-In_(2)O_(3)as cathode shows a high power density of 2.29 mW cm^(-2)and a long-term stability during charge-discharge cycles.This work provides a valuable perspective to elucidate co-defective catalysts in regulating the intermediates for efficient CO_(2)RR.
基金supported by State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-18-73.17).
文摘Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.
基金partially sponsored by the Development and Reform Commission of Ningbo Municipality(Ningbo Municipal Engineering Research Centre for Solid Carbonaceous Wastes Processing and Utilization Technologies)the National Natural Science Foundation Youth Science Fund Project(52203300),the National Natural Science Foundation of China(22308195)+4 种基金the Natural Science Foundation of Shandong Province(ZR2023QB237)Ningbo Science and Technologies Innovation 2025 Major Special Project(2018B10027)The Zhejiang Provincial Department of Science and Technology is acknowledged for sponsorship under its Provincial Key Laboratory Program(2020E10018)Ningbo Bureau of Science and Technology is also thanked for its support to the Key Laboratory of Clean Energy Conversion TechnologiesThe University of Nottingham Ningbo China provides the first author with a full scholarship。
文摘Dual-atom catalysts(DACs)have emerged as potential catalysts for effective electroreduction of CO_(2)due to their high atom utilization efficiency and multiple active sites.However,the screening of DACs remains a challenge due to the large number of possible combinations,making exhaustive experimental or computational screening a daunting task.In this study,a density functional theory(DFT)-based machine learning(ML)-accelerated(DFT-ML)hybrid approach was developed to test a set of 406 dual transition metal catalysts on N-doped graphene(NG)for the electroreduction of CO_(2)to HCOOH.The results showed that the ML algorithms can successfully capture the relationship between the descriptors of the DACs(inputs)and the limiting potential for HCOOH generation(output).Of the four ML algorithms studied in this work,the feedforward neural network model achieved the highest prediction accuracy(the highest correlation coefficient(R^(2))of 0.960 and the lowest root mean square error(RMSE)of 0.319 eV on the test set)and the predicted results were verified by DFT calculations with an average absolute error of 0.14 eV.The DFT-ML approach identified Co-Co-NG and Ir-Fe-NG as the most active and stable electrocatalysts for the electrochemical reduction of CO_(2)to HCOOH.The DFT-ML hybrid approach exhibits exceptional prediction accuracy while enabling a significant reduction in screening time by an impressive 64%compared to conventional DFT-only calculations.These results demonstrate the immense potential of using ML methods to accelerate the screening and rational design of efficient catalysts for various energy and environmental applications.
基金financially supported by the National Natural Science Foundation of China(No.22305101)the Natural Science Foundation of Jiangsu Province(No.BK20231032)+2 种基金the Special Fund Project of Jiangsu Province for Scientific and Technological Innovation in Carbon Peaking and Carbon Neutrality(No.BK20220023)the Fundamental Research Funds for the Central Universities(No.JUSRP123020)the Startup Funding at Jiangnan University(No.1045219032220100)。
文摘Engineering the desired dual metal sites to realize C-C coupling of CO_(2)is of great importance for the practical applications of CO_(2)electroreduction reaction(CER).Herein,an efficient strategy for constructing heterogeneous Pt^(δ+)-Cu^(δ+)dual sites to strengthen the generation and coupling of*CO and*CHO(or*COH)during CER process is presented in this work.The radiilarger Pt not only stabilizes the Cu^(δ+)ut also induces a tensile strain in Pt^(δ+)-Cu^(δ+)dual sites.The obtained Pt^(δ+)-Cu^(δ+)dual sites achieve a total Faradaic efficiency and current density of C2products with 70.9%and586.9 mA·cm-2at-1.20 V(vs.RHE),which is higher than that of Cu^(δ+)single site(55.4%,286.9 mA·cm^(-2)).The in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)reveals that the Pt^(δ+)-Cu^(δ+)dual sites can promote the generation of C1intermediates(such as*CO,*COOH,*COH,and*CHO)and C-C coupling.Additional in situ surface-enhanced Raman spectra demonstrate that Pt^(δ+)Cu^(δ+)dual sites can induce the generation of the high-frequency peak for*CO_(atop),thus accelerating the C-C coupling.This work provides a promising avenue for stabilizing and enhancing the performance of Cu^(δ+)sites toward CER.
基金supported by the National Key R&D Program of China(Nos.2022YFA1503104 and 2022YFA1503102)the Natural Science Foundation of Shandong Province(No.2022HWYQ-009)+2 种基金the Natural Science Foundation of Jiangsu Province(No.BK20230243)Taishan Scholars Project(No.tspd20230601)Qilu Young Scholars Program of Shandong University.
文摘The nitrite(NO_(2)^(−))to ammonia(NH3)electroreduction reaction(NO_(2)^(−)RR)would be impeded by sluggish proton-coupled electron transfer kinetics and competitive hydrogen evolution reaction(HER).A key to improving the NH_(3) selectivity is to facilitate adsorption and activation of NO_(2)^(−),which is generally undesirable in unitary species.In this work,an efficient NO_(2)^(−)RR catalyst is constructed by cooperating Pd with In2O3,in which NO_(2)^(−)could adsorb on interfacial dual-site through“Pd–N–O–In”linkage,leading to strengthened NO_(2)^(−)adsorption and easier N=O bond cleavage than that on unitary Pd or In2O3.Moreover,the Pd/In_(2)O_(3)composite exhibits moderate H^(*)adsorption,which may facilitate protonation kinetics while inhibiting competitive HER.As a result,it exhibits a fairly high NH_(3)yield rate of 622.76 mmol h^(−1)g^(−1)cat with a Faradaic efficiency(FE)of 95.72%,good selectivity of 91.96%,and cycling stability towards the NO_(2)^(−)RR,surpassing unitary In_(2)O_(3)and Pd/C electrocatalysts.Besides,computed results indicate that NH_(3)production on Pd/In_(2)O_(3)follows the deoxidation to hydrogenation pathway.This work highlights the significance of H^(*)and NO_(2)^(−)adsorption modulation and N=O activation in NO_(2)^(−)RR electrochemistry by creating synergy between a mediocre catalyst with an appropriate cooperator.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52161135302,22105087)the Postdoctoral Research Foundation of China(Grant No.2022M721360)the Natural Science Foundation of Jiangsu Province(Grant No.BK20210446)。
文摘The d-d orbital coupling induced by crystal-phase engineering can effectively adjust the electronic structure of electrocatalysts,thus showing significant catalytic performance,while it has been rarely explored in electrochemical acetonitrile reduction reaction(ARR)to date.Herein,we successfully realize the structural transformation of Pd Cu metallic aerogels(MAs)from face-centered cubic(FCC)to body-centered cubic(BCC)through annealing treatment.Specifically,the BCC Pd Cu MAs exhibit excellent ARR performance with high ethylamine selectivity of 90.91%,Faradaic efficiency of 88.60%,yield rate of 316.0 mmol h^(-1)g^(-1)_(Pd+Cu)and long-term stability for consecutive electrolysis within 20 h at-0.55 V vs.reversible hydrogen electrode,outperforming than those of FCC Pd Cu MAs.Under the membrane electrode assembly system,BCC Pd Cu MAs also demonstrate excellent ethylamine yield rate of 389.5 mmol h^(-1)g^(-1)_(Pd+Cu).Density functional theory calculation reveals that the d-d orbital coupling in BCC Pd Cu MAs results in an evident correlation effect for the interaction of Pd and Cu sites,which boosts up the Cu sites electronic activities to enhance ARR performance.Our work opens a new route to develop efficient ARR electrocatalysts from the perspective of crystalline structure transformation.
文摘The electrocatalytic synthesis of imines through the reductive imination of nitroarenes with aldehydes is a facile,environmentally friendly,and valuable process.In this study,high selectivity electrosynthesis of imines was realized through the electrocatalytic C-N coupling reaction between nitroarenes and aryl aldehydes on Co_(9)S_(8)nanoflowers with rich sulfur vacancies(Co_(9)S_(8)-Vs).Comparative experiments revealed that positively charged sulfur vacancies play a pivotal role in boosting catalytic selectivity towards imines.Electron-deficient sulfur vacancies intensified the adsorption of negatively charged Ph-NO_(2),thereby enhancing the conversion rate of the electrochemical nitrobenzene-reduction reaction(eNB-RR).Simultaneously,sulfur vacancies augmented the adsorption capability of negatively charged Ph-CHO,enriching Ph-CHO species at the electrode interface and expediting the Schiff base condensation reaction rate.The experimental results show that the reaction conditions can satisfy the different nitroarenes and aryl aldehydes in the electrocatalytic aqueous-phase system under mild conditions to obtain the corresponding imine products in high selectivity.This study provides a facile and environmentally friendly pathway for future electrocatalytic synthesis of imine.
基金financial support from the Zhejiang Provincial Natural Science Foundation of China(LQ22B060007)the National Natural Science Foundation of China(22206042)+2 种基金the Scientific Research Start-up of Hangzhou Normal University(2021GDL014)the Hebei Natural Science Foundation(E2021203047)the Hebei Provincial Foundation for Returness(C20200369)。
文摘Electrocatalytic converting CO_(2) into chemical products has emerged as a promising approach to achieving carbon neutrality.Herein,we report a bismuth-based catalyst with high curvature terminal and amorphous layer which fabricated via two-step electrodeposition achieves stable formate output in a wide voltage window of 600 mV.The Faraday efficiency(FE) of formate reached up to 99.4% at-0.8 V vs.RHE and it remained constant for more than 92 h at-15 mA cm^(-2).More intriguingly,FE formate of95.4% can be realized at a current density of industrial grade(-667.7 mA cm^(-2)) in flow cell.The special structure promoted CO_(2) adsorption and reduced its activation energy and enhanced the electric-thermal field and K^(+) enrichment which accelerated the reaction kinetics.In situ spectroscopy and theoretical calculation further confirmed that the introduction of amorphous structure is beneficial to adsorpting CO_(2)and stabling*OCHO intermediate.This work provides special insights to fabricate efficient electrocatalysts by means of structural and crystal engineering and makes efforts to realize the industrialization of bismuth-based catalysts.