Two-dimensional(2D)materials based on group IVA elements have attracted extensive attention owing to their rich chemical structures and novel proper-ties.This comprehensive review focuses on the phases of Ge monoeleme...Two-dimensional(2D)materials based on group IVA elements have attracted extensive attention owing to their rich chemical structures and novel proper-ties.This comprehensive review focuses on the phases of Ge monoelemental and binary 2D materials including germanene and its derivatives,Ge-IVA binary compounds,Ge-VA binary compounds,and Ge-VIA binary compounds.The latest progress in predictive modeling,fabrication,and fundamental and physical property modulation of their stable 2D configurations are presented.Accordingly,various interesting applications of these Ge-based 2D materials are discussed,particularly field effect transistors,photodetectors,optical devices,catalysts,energy storage devices,solar cells,thermoelectric devices,sensors,biomedical materials,and spintronic devices.Finally,this review con-cludes with a few perspectives and an outlook for quickly expanding the appli-cation scope Ge-based 2D materials based on recent developments.展开更多
In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-pri...In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-principles calculations. The structure of this new mC12 is mechanically and dynamically stable at ambient pressure and has a low equilibrium density due to its large cell volume. Furthermore, calculations of the elastic constants and moduli reveal that mC12 has a rigid mechanical property. Finally, it exhibits metallic characteristics, owing to the mixture of sp-sp2 hybrid carbon atoms.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:52103093,52130303,52173078China Postdoctoral Science Foundation,Grant/Award Numbers:2021M702424,2022T150172+1 种基金the Young Elite Scientists Sponsorship Program by CAST,Grant/Award Number:2021QNRC001the Seed Foundation of Tianjin University,Grant/Award Number:220636。
文摘Two-dimensional(2D)materials based on group IVA elements have attracted extensive attention owing to their rich chemical structures and novel proper-ties.This comprehensive review focuses on the phases of Ge monoelemental and binary 2D materials including germanene and its derivatives,Ge-IVA binary compounds,Ge-VA binary compounds,and Ge-VIA binary compounds.The latest progress in predictive modeling,fabrication,and fundamental and physical property modulation of their stable 2D configurations are presented.Accordingly,various interesting applications of these Ge-based 2D materials are discussed,particularly field effect transistors,photodetectors,optical devices,catalysts,energy storage devices,solar cells,thermoelectric devices,sensors,biomedical materials,and spintronic devices.Finally,this review con-cludes with a few perspectives and an outlook for quickly expanding the appli-cation scope Ge-based 2D materials based on recent developments.
基金This work was financially supported by the National Natural Science Foundation of China (Grant No. 11204007), the 111 Project (B17035), tile Natural Science New Star of Science and Technologies Research Plan in Shaanxi Province of China (Grant No. 2017KJXX-53), and Education Com- mittee Natural Science Foundation in Shaanxi Province of China (Grant No. 16JK1049). Xiao-Feng Shi is acknowledged for help- fill discussions and comments on the manuscript. All the authors thank the computing facilities at the High Performance Computing Center of Xidian University.
文摘In this paper, we propose a novel hybrid sp-sp2 monoclinic carbon allotrope mC12. This allotrope is a promising light metallic material, the mechanical and electronic properties of which are studied based on first-principles calculations. The structure of this new mC12 is mechanically and dynamically stable at ambient pressure and has a low equilibrium density due to its large cell volume. Furthermore, calculations of the elastic constants and moduli reveal that mC12 has a rigid mechanical property. Finally, it exhibits metallic characteristics, owing to the mixture of sp-sp2 hybrid carbon atoms.