Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanopart...Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanoparticles(diameter:6±2 nm)are homogeneously immobilized on 2D Ni based MOFs(Ni-BDC,thickness:5±1 nm)to improve the OER stability.Electronic structure modulation for enhanced catalytic activity is studied via adjusting the amount of Fe_(3)O_(4) nanoparticles on Ni-BDC.The optimal Fe_(3)O_(4)/Ni-BDC achieves the best OER performance with an overpotential of 295 mV at 10 mA cm^(-2),a Tafel slope of 47.8 mV dec^(-1) and a considerable catalytic durability of more than 40 h(less than 5 h for Ni-BDC alone).DFT calculations confirm that the active sites for Fe_(3)O_(4)/Ni-BDC are mainly contributed by Fe species with a higher oxidation state,and the potential-determining step(PDS)is the formation of the adsorbed O*species,which are facilitated in the composite.展开更多
Single-atom catalysts are promising for H_(2)O_(2) photosynthesis from O_(2) and H_(2)O,but their efficiency is still limited by the ill-defined electronic structure.In this study,Co single-atoms with unique four plan...Single-atom catalysts are promising for H_(2)O_(2) photosynthesis from O_(2) and H_(2)O,but their efficiency is still limited by the ill-defined electronic structure.In this study,Co single-atoms with unique four planar N-coordination and one axial P-coordination(Co-N_(4)P_(1))are decorated on the lateral edges of nanorod-like crystalline g-C_(3)N_(4)(CCN)photocatalysts.Significantly,the electronic structures of central Co as active sites for O_(2) reduction reaction(ORR)and planar N-coordinator as active sites for H_(2)O oxidation reaction(WOR)in Co-N_(4)P_(1) can be well regulated by the synergetic effects of introducing axial P-coordinator,in contrast to the decorated Co single-atoms with only four planar N-coordination(Co-N_(4)).Specifically,directional photoelectron accumulation at central Co active sites,induced by an introduced midgap level in Co-N_(4)P_(1),mediates the ORR active sites from 4e–-ORR-selective terminal–NH_(2) sites to 2e–-ORR-selective Co sites,moreover,an elevated d-band center of Co 3d orbital strengthens ORR intermediate*OOH adsorption,thus jointly facilitating a highly selective and active 2e^(–)-ORR pathway to H_(2)O_(2) photosynthesis.Simultaneously,a downshifted p-band center of N_(2)p orbital in Co-N_(4)P_(1) weakens WOR intermediate*OH adsorption,thus enabling a preferable 2e^(–)-WOR pathway toward H_(2)O_(2) photosynthesis.Subsequently,Co-N_(4)P_(1) exhibits exceptional H_(2)O_(2) photosynthesis efficiency,reaching 295.6μmol g^(-1) h^(-1) with a remarkable solar-to-chemical conversion efficiency of 0.32%,which is 15 times that of Co-N_(4)(19.2μmol g^(-1) h^(-1))and 10 times higher than CCN(27.6μmol g^(-1) h^(-1)).This electronic structure modulation on single-atom catalysts offers a promising strategy for boosting the activity and selectivity of H_(2)O_(2) photosynthesis.展开更多
Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric an...Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric and electronic structure during single reaction process under the same conditions.Herein,we report a simple self-template strategy to generate honeycomb-like Ni_(2)P/N,P-C hybrids with preferred electronic architecture.Experiments coupled with theoretical results revealed that the synthesized catalyst has two characteristics:firstly,the unique honeycomb-like morphology not only enables the fully utilization of catalytic active sites but also optimizes the mass/electron transportation pathway,which favor the diffusion of electrolyte to accessible active sites.Secondly,N,P-C substrate,on the one hand,largely contributes the electronic distribution near Fermi level(E_(F))thus boosting its electrical conductivity.On the other hand,the support effect result in the upshift of d-band center and electropositivity of Ni sites,which attenuates the energy barrier for the adsorption of OH~àand the formation of*OOH.In consequence,the optimized Ni_(2)P/N,P-C catalysts feature high electrocatalytic activity towards OER(a low overpotential of 252 m V to achieve10 m A cm^(-2))and 10 h long-term stability,the outstanding performance is comparable to most of transition metal catalysts.This work gives a innovative tactics for contriving original OER electrocatalysts,inspirng deeper understanding of fabricating catalysts by combining theoretical simulation and experiment design.展开更多
Precise regulation of atomic and electronic structures of two-dimensional tungsten disulfide(WS_(2))is significant for rational design of high-performance and low-cost catalyst for acetylene hydrogenation to ethylene(...Precise regulation of atomic and electronic structures of two-dimensional tungsten disulfide(WS_(2))is significant for rational design of high-performance and low-cost catalyst for acetylene hydrogenation to ethylene(AHE),yet remains a major challenge.Herein,we report that by substituting a W atom of WS_(2) with a series of transition metal atoms,sulfur vacancy-confined Cu in the WS_(2) basal plane(Cu@WS_(2)-Sv)is theoretically screened as a superior non-noble metal-based catalyst with higher activity,selectivity,and stability for the AHE than other candidates.The co-adsorption of C_(2)H_(2) and H_(2) and hydrogenation of C_(2)H_(3)^(*) to C_(2)H_(4)^(*) are revealed as the key steps establishing a volcano-like activity trend among the candidates,which present Cu@WS_(2)-Sv as the optimum catalyst combined with molecular dynamics and reaction kinetics analyses.The kinetically more favorable desorption of C_(2)H_(4) than the over hydrogenation path validates a higher selectivity toward C_(2)H_(4) over C_(2)H_(6).Furthermore,a machine-learning model reveals the significant effect of d-electron number and electronegativity of the metal heteroatoms in modulating the AHE activity.展开更多
Advancing aqueous zinc-ion batteries(AZIBs)are significantly challenged by the need to find cathode materials that can provide both high capacity and fast reaction kinetics.Tellurium telluride,a topological insulator,...Advancing aqueous zinc-ion batteries(AZIBs)are significantly challenged by the need to find cathode materials that can provide both high capacity and fast reaction kinetics.Tellurium telluride,a topological insulator,has emerged as a promising cathode candidate for AZIBs,garnering increasing attention.However,the complete understanding of its electrochemical reaction mechanism and its unsatisfactory energy storage performance are major obstacles to the practical use.In this work,we synthesize a bimetallic bismuth-nickel telluride with Te vacancies,defined as Bi_(2)Te_(3-x)/NiTe_(2),which forms a topological insulator/topological Dirac semimetal heterostructure through a hydrothermal approach.The electrochemical reaction mechanism of Bi_(2)Te_(3-x)/NiTe_(2),along with its phase and structural changes are elucidated by using in-situ X-ray diffraction,various electrochemical techniques,and ex-situ characterizations.The influences of Bi_(2)Te_(3-x)/NiTe_(2)on the electronic structure,interracial electron transfer,migration barrier,and ion adsorption energy are investigated by using density functional theory calculations.Our findings reveal that Bi_(2)Te_(3-x)/NiTe_(2)exhibits excellent specific capacity,stable cycling,and superior rate capability as a cathode material for AZIBs.Moreover,further studies demonstrate that Bi_(2)Te_(3-x)/NiTe_(2)maintains exceptional performance at low temperatures of-15 and-5℃,and also retains stability and flexibility when integrated into flexible battery packs.展开更多
Construction of elaborate configuration to enhance the intrinsic activity of NiMo-based catalyst candidates holds promise for accelerating the hydrogen evolution reaction(HER)kinetics.Herein,a novel cerium-doped NiMo ...Construction of elaborate configuration to enhance the intrinsic activity of NiMo-based catalyst candidates holds promise for accelerating the hydrogen evolution reaction(HER)kinetics.Herein,a novel cerium-doped NiMo phosphate(labeled as Ce-NiMo(PO_(4))_(0.66))is designed and fabricated via a facile hydrothermal and phosphatization method.A comprehensive characterization reveals that the introduction of the rare metal element cerium with an enriched 4f electronic distribution near the Fermi level modulates the hybridization of the 3d-2p orbitals and optimizes the electronic structure of the NiMo-based phosphate catalysts,which leads to the synergy between the nickel-molybdenum dual sites and the phosphate active unit to synchronously enhance the water dissociation and proton dehydrogenation transfer of the HER process.Consequently,Ce-NiMo(PO_(4))0.66 exhibits excellent alkaline HER performance with overpotentials at 10 and 500 mA·cm^(-2)current densities being only 40 and 295 mV,respectively,and desirable long-term durability at industrial current densities of 500 mA·cm^(-2).An overall hydrazine splitting(OHzS)constructed with Ce-NiMo(PO_(4))_(0.66)as a hydrazine oxidation reaction(HzOR)and HER bifunctional electrocatalyst has been constructed to achieve industrial current densities at the low voltage of 0.92 V,verifying its practical feasibility for sustainable hydrogen production and degradation of hydrazine pollutants.This work highlights that regulating the 3d-2p hybridization state through the inducing 4f orbital electronic state is a feasible means for enhancing the HER activity of transition metal compound catalysts.展开更多
The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Eff...The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity.展开更多
Designing and synthesizing cost-effective bifunctional catalysts for overall alkaline water/seawater splitting is still a huge challenge for hydrogen production.Herein,Co/Ni/Fe/Mn based-amorphous high-entropy phosphox...Designing and synthesizing cost-effective bifunctional catalysts for overall alkaline water/seawater splitting is still a huge challenge for hydrogen production.Herein,Co/Ni/Fe/Mn based-amorphous high-entropy phosphoxide self-standing electrode(CNFMPO)is synthesized by the facile and fast electrodeposition method.CNFMPO exhibits excellent bifunctional electrocatalytic performances on alkaline water/seawater electrolysis.The hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)overpotentials of CNFMPO in alkaline water/seawater are as low as 43/73 and 252/282 mV to reach a current density of 10 mA cm^(-2),respectively.Additionally,two-electrode electrolyzers with CNFMPO||CNFMPO successfully achieve the current density of 10 mA cm^(-2) at low voltages of 1.54 and 1.56 V for overall alkaline water/seawater splitting,respectively.CNFMPO exhibits satisfactory long-term stability on overall alkaline water/seawater splitting for the surface reconstruction into active metal hydroxide/(oxy)hydroxide,phosphite,and phosphate.Moreover,no hypochlorite is detected during seawater electrolysis for the beneficial chlorite oxidation inhibition of the reconstructed phosphite and phosphate.The excellent catalytic performances of CNFMPO are due to the unique amorphous structure,multi-component synergistic effect,beneficial electronic structure modulation,and surface reconstruction during the catalytic reaction process.Therefore,CNFMPO has shown potential promotion to the development of the water/seawater splitting industry as a promising substituent for noble-metal electrocatalysts.This work provides new insights into the design of efficient bifunctional catalysts for overall water/seawater splitting.展开更多
Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still r...Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still remains a great challenge.In this work,Fe atom clusters(Fe_(AC))modified by high-density Cu single atoms(Cu_(SA))in a N,S-doped porous carbon substrate(Fe_(AC)/Cu_(SA)@NCS)is reported for enhanced ORR electrocatalysis.Fe_(AC)/Cu_(SA)@NCS exhibits excellent ORR performance with a half-wave potential(E_(1/2))of 0.911 V,a high four-electron process selectivity and excellent stability.The ORR performance is also verified in the Fe_(AC)/Cu_(SA)@NCS-based Zn-air battery,which shows a high peak power density of 192.67 mW cm^(-2),a higher specific capacity of 808.3 mAh g^(-1)and impressive charge-discharge cycle stability.Moreover,density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters,reducing the energy barrier of the rate-determining step(i.e.,*OH desorption)on Fe_(AC)/Cu_(SA)@NCS.This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.展开更多
Molybdenum disulfide (MoS2) has been recognized as one of the most promising candidates to replace precious Pt for hydrogen evolution reaction (HER) catalysis, due to the natural abundance, low cost, tunable electroni...Molybdenum disulfide (MoS2) has been recognized as one of the most promising candidates to replace precious Pt for hydrogen evolution reaction (HER) catalysis, due to the natural abundance, low cost, tunable electronic properties, and excellent chemical stability. Although notable processes have been achieved in the past decades, their performance is still far less than that of Pt. Searching effective strategies to boosting their HER performance is still the primary goal. In this review, the recent process of the electronic regulation of MoS2 for HER is summarized, including band structure engineering, electronic state modulation, orbital orientation regulation, interface engineering. Last, the key challenges and opportunities in the development of MoS2-based materials for electrochemical HER are also discussed.展开更多
Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x)integrated electrode for w...Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x)integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2)under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2)under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2)for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2)at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.展开更多
Developing an efficientmethod to improve the photocatalytic efficiency of graphitic carbon nitride(g-C3 N4)is of great significance for solar H2 production.Electronic structure modulation has been considered one of th...Developing an efficientmethod to improve the photocatalytic efficiency of graphitic carbon nitride(g-C3 N4)is of great significance for solar H2 production.Electronic structure modulation has been considered one of the most crucial strategies to improving the photocatalytic efficiency of g-C_(3)N_(4),but how to efficiently modulate its electronic structure remains a huge challenge.Herein,we,for the first time,report a facile and highly-efficient approach to modulating the electronic structure of g-C_(3)N_(4)through single Ag atom implantation with a Ag_(1)-N_(3)coordination configuration into the g-C_(3)N_(4)framework.展开更多
It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been consi...It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.展开更多
Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dio...Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates.展开更多
Heteroatom doping has emerged as an effective strategy to enhance the performance of electrocatalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Traditional doping methods often involve har...Heteroatom doping has emerged as an effective strategy to enhance the performance of electrocatalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Traditional doping methods often involve harsh chemical treatments and tedious procedures,hindering their widespread applications.Furthermore,although dynamic surface reconstruction in alkaline media is commonly observed in bimetallic compounds,strategies to regulatethis reconstruction behavior for enhanced HER and OER performances remain inadequately explored.Herein,we report an ultrafast(≤300 s)and mild electrochemical doping approach to fabricate Se-doped NiCo_(2)S_(4) hollow nanoarrays on carbon fiber papers(a-NiCo_(2)(S_(1-x)Se_(x))_(4)),investigating the role of Se in enhancing overall water splitting performance.Under HER conditions,a-NiCo_(2)(S_(1-x)Se_(x))_(4) demonstrates remarkable stability,with Se tuning the electronic structure to optimize intermediate adsorption and facilitate H_(2)O dissociation.While under OER conditions,Se doping lowers the energy barrier for reconstruction and promotes transformation into active Se,S co-doped Ni_(0.33)Co_(0.67)OOH nanosheets.The optimal samples exhibit superior HER and OER activity,requiring a cell voltage of 1.578 V to deliver a current density of 100 mA·cm^(-2) for overall water spltting.This work not only introduces a facile method for Se doping but also provides comprehensive insights into the structure-composition-activity relationship for Se-doped bimetallic sulfide.展开更多
Alloying Pt with non-noble metals is effective for optimizing the activity of Pt-based electrocatalysts.However,the development of high-activity and stable hydrogen electrocatalysts remains challenging owing to the ra...Alloying Pt with non-noble metals is effective for optimizing the activity of Pt-based electrocatalysts.However,the development of high-activity and stable hydrogen electrocatalysts remains challenging owing to the random elemental distribution and weak interatomic bonding in alloys.Herein,we reported a Pt_(2)CoNi intermetallic nanocatalyst rich in surface microstrain for high-performance hydrogen electrocatalysis.The superlattice ordering crystalline structure ensures the specific positions of atoms in this nanocatalyst,resulting in the alternating arrangement of Pt and Co/Ni atoms.In one nanoparticle,multiple Pt_(2)CoNi grains are arranged along different grain orientations,which generates abundant surface microstrain due to the discrepancy of intermetallic lattice parameters.The unique crystal structure effectively modulates the electron distribution of Pt_(2)CoNi intermetallic nanocatalyst.The active sites of this nanocatalyst exhibit downshifted d-band centers,leading to accelerated hydrogen adsorption/desorption behavior.Resultantly,the Pt_(2)CoNi intermetallic nanocatalyst demonstrates impressive bifunctional hydrogen electrocatalytic capabilities for hydrogen evolution reaction(mass activity of 1.02 A/mg Pt and η_(10) variation of 3.7 mV after 10,000 cycles)and hydrogen oxidation reaction(kinetic mass activity of 4.08 A/mg Pt and 97.3%activity retention after 12 h operating at 0.1 V vs.RHE).This work provides a promising route for the development of efficient nanocatalysts with ingenious crystal structures.展开更多
CO_(2)electroreduction(CO_(2)RR)represents a promising negative-carbon technology,which is in urgent need for efficient and high-selectivity catalysts.Here,a support control strategy is employed for precise surface en...CO_(2)electroreduction(CO_(2)RR)represents a promising negative-carbon technology,which is in urgent need for efficient and high-selectivity catalysts.Here,a support control strategy is employed for precise surface engineering of charge-asymmetry nanocluster catalyst(CuZnSCN),in which zinc and copper atoms together form a metal cluster loaded on sulfur and nitrogen co-etched carbon matrix.The synergistic promotion mechanism of CO_(2)RR by Cu–Zn atom interactions and sulfur–nitrogen atom doping was investigated.A CO partial current density of 74.1 mA cm^(-2)was achieved in an alkaline electrolyte,as well as a considerable CO Faraday efficiency of 97.7%.In situ XAS(X-ray absorption spectroscopy)showed that the stabilization of Cu^(+)and Zn^(2+)species in the nanoclusters and doped sulfur atoms during the CO_(2)RR process contributes to the sustained adsorption of protons and the generation and conversion of the CO.This work verifies the possibility of metal-support and intermetallic interactions to synergistically enhance electrochemical catalytic performance and provides ideas for further bimetallic cluster catalyst development.展开更多
Multi-interface engineering is deemed as an effective strategy to boost catalytic activity via electronic structure modulation.However,it is still a big challenge due to the phase-separation tendency.Herein,we designe...Multi-interface engineering is deemed as an effective strategy to boost catalytic activity via electronic structure modulation.However,it is still a big challenge due to the phase-separation tendency.Herein,we designed CoP-WP heterojunctions with multi-touch interfaces using Co_(8)W_(18),a definite structure polyoxometalate-based polynuclear cobalt molecular cluster,as a precursor.The Co P-WP heterojunctions anchored on reduced graphene oxide(Co P-WP/r GO)were obtained by growing Co_(8)W_(18)on GO followed by phosphorization.The intrinsic{Co-O-W}coordination modes in Co_(8)W_(18)are conducive to the formation of the multiple interfaces between CoP and WP.The abundant intimate interfaces in Co P-WP heterojunctions promote the electron transfer from WP to Co P,thus regulating the interfacial electronic structure and optimizing the hydrogen adsorption free energy(ΔGH*),as verified by X-ray photoelectron spectroscopy analysis and theoretical calculations.Furthermore,the integration of r GO provides Co P-WP/r GO with a large surface area and high conductivity,aiding mass transport and charge transfer.Co P-WP/r GO exhibits remarkable hydrogen evolution reaction(HER)activity with low overpotentials of 96,130,and 138 m V at 10 m A cm^(-2)in alkaline,acidic and neutral media,respectively,and has long-term durability.Our discovery provides an opportunity to design heterojunction materials with multi-coupled interfaces at low-cost and efficient HER catalysts.展开更多
The escalating emissions of greenhouse gases into atmosphere have precipitated a host of ecology and environ-mental concerns.Electrochemical reduction of CO_(2)(CO_(2)RR)is emerging as a sustainable solution for effec...The escalating emissions of greenhouse gases into atmosphere have precipitated a host of ecology and environ-mental concerns.Electrochemical reduction of CO_(2)(CO_(2)RR)is emerging as a sustainable solution for effectively addressing these issues.Leveraging the cost-effectiveness and eco-friendly attributes,Bi-based catalysts have been extensively studied with the purpose of enhancing activity and stability.This minireview majorly overviews the research advancements in Bi-based catalysts for CO_(2)electrocatalysis towards formic acid/formate production.Initially,we offer a concise overview of the reaction pathways involved in electrochemical CO_(2)reduction.Sub-sequently,we summarize the progress in various types of electrolysis cells and associated influencing factors.Specifically,the electronic structure modulation strategies of Bi-based catalysts including oxide-derived bismuth,bismuth-based chalcogenides,bimetallic and high-entropy compounds,etc.have been highlighted.Future research endeavors are poised to delve deeper into comprehending system dynamics during the reaction process to achieve exemplary stability high energy efficiency under industrial conditions.展开更多
Developing highly active single-atom sites catalysts for electrochemical reduction of CO_(2) is an effective and environmental-friendly strategy to promote carbon-neutral energy cycle and ameliorate global climate iss...Developing highly active single-atom sites catalysts for electrochemical reduction of CO_(2) is an effective and environmental-friendly strategy to promote carbon-neutral energy cycle and ameliorate global climate issues.Herein,we develop an atomically dispersed N,S co-coordinated bismuth atom sites catalyst(Bi-SAs-NS/C)via a cation and anion simultaneous diffusion strategy for electrocatalytic CO_(2) reduction.In this strategy,the bonded Bi cation and S anion are simultaneously diffused into the nitrogen-doped carbon layer in the form of Bi2S3.Then Bi is captured by the abundant N-rich vacancies and S is bonded with carbons.support at high temperature,formed the N,S co-coordinated Bi sites.Benefiting from the simultaneous diffusion of Bi and S,different electronegative N and S can be effectively co-coordinated with Bi,forming the uniform Bi-N_(3)S/C sites.The synthesized.Bi-SAs-NS/C exhibits a high selectivity towards CO with over 88%Faradaic efficiency in a wide potential range,and achieves a maximum FE_(CO)of 98.3%at-0.8 V vs.RHE with a current density of 10.24 mA·cm^(-2),which can keep constant with negligible degradation in 24 h continuous electrolysis.Experimental results and theoretical calculations reveal that the significantly improved catalytic performance of Bi-SAs-NS/C than Bi-SAs-N/C is ascribed to the replacement of one coordinated-N with low electronegative S in Bi-N_(4)C center,which can greatly reduce the energy barrier of the intermediate formation in rate-limiting step and increase the reaction kinetics.This work provides an effective strategy for rationally designing highly active single-atom sites;catalysts for efficient electrocatalysis with optimized electronic structure.展开更多
基金support from the Chinese Scholarship Council(201706220080)for W.H.the Natural Science Foundation of Hunan Province(2019JJ50526)for C.P.+1 种基金The Danish Council for Independent Research for the YDUN project(DFF 4093-00297)to J.Z.Villum Experiment(grant No.35844)for X.X.
文摘Two-dimensional(2D)metal organic frameworks(MOFs)are emerging as low-cost oxygen evolution reaction(OER)electrocatalysts,however,suffering aggregation and poor operation stability.Herein,ultrafine Fe_(3)O_(4) nanoparticles(diameter:6±2 nm)are homogeneously immobilized on 2D Ni based MOFs(Ni-BDC,thickness:5±1 nm)to improve the OER stability.Electronic structure modulation for enhanced catalytic activity is studied via adjusting the amount of Fe_(3)O_(4) nanoparticles on Ni-BDC.The optimal Fe_(3)O_(4)/Ni-BDC achieves the best OER performance with an overpotential of 295 mV at 10 mA cm^(-2),a Tafel slope of 47.8 mV dec^(-1) and a considerable catalytic durability of more than 40 h(less than 5 h for Ni-BDC alone).DFT calculations confirm that the active sites for Fe_(3)O_(4)/Ni-BDC are mainly contributed by Fe species with a higher oxidation state,and the potential-determining step(PDS)is the formation of the adsorbed O*species,which are facilitated in the composite.
文摘Single-atom catalysts are promising for H_(2)O_(2) photosynthesis from O_(2) and H_(2)O,but their efficiency is still limited by the ill-defined electronic structure.In this study,Co single-atoms with unique four planar N-coordination and one axial P-coordination(Co-N_(4)P_(1))are decorated on the lateral edges of nanorod-like crystalline g-C_(3)N_(4)(CCN)photocatalysts.Significantly,the electronic structures of central Co as active sites for O_(2) reduction reaction(ORR)and planar N-coordinator as active sites for H_(2)O oxidation reaction(WOR)in Co-N_(4)P_(1) can be well regulated by the synergetic effects of introducing axial P-coordinator,in contrast to the decorated Co single-atoms with only four planar N-coordination(Co-N_(4)).Specifically,directional photoelectron accumulation at central Co active sites,induced by an introduced midgap level in Co-N_(4)P_(1),mediates the ORR active sites from 4e–-ORR-selective terminal–NH_(2) sites to 2e–-ORR-selective Co sites,moreover,an elevated d-band center of Co 3d orbital strengthens ORR intermediate*OOH adsorption,thus jointly facilitating a highly selective and active 2e^(–)-ORR pathway to H_(2)O_(2) photosynthesis.Simultaneously,a downshifted p-band center of N_(2)p orbital in Co-N_(4)P_(1) weakens WOR intermediate*OH adsorption,thus enabling a preferable 2e^(–)-WOR pathway toward H_(2)O_(2) photosynthesis.Subsequently,Co-N_(4)P_(1) exhibits exceptional H_(2)O_(2) photosynthesis efficiency,reaching 295.6μmol g^(-1) h^(-1) with a remarkable solar-to-chemical conversion efficiency of 0.32%,which is 15 times that of Co-N_(4)(19.2μmol g^(-1) h^(-1))and 10 times higher than CCN(27.6μmol g^(-1) h^(-1)).This electronic structure modulation on single-atom catalysts offers a promising strategy for boosting the activity and selectivity of H_(2)O_(2) photosynthesis.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07402001)the Ministry of Science and Technology of China for their financial support and the associated project is the Key Program for International S&T Cooperation Projects(No.2018YFE0124600)。
文摘Oxygen evolution reaction(OER)as the foremost stumbling block to generate cost-effective clean fuels has received extensive attention in recent years.But,it still maintains the challenge to manipulate the geometric and electronic structure during single reaction process under the same conditions.Herein,we report a simple self-template strategy to generate honeycomb-like Ni_(2)P/N,P-C hybrids with preferred electronic architecture.Experiments coupled with theoretical results revealed that the synthesized catalyst has two characteristics:firstly,the unique honeycomb-like morphology not only enables the fully utilization of catalytic active sites but also optimizes the mass/electron transportation pathway,which favor the diffusion of electrolyte to accessible active sites.Secondly,N,P-C substrate,on the one hand,largely contributes the electronic distribution near Fermi level(E_(F))thus boosting its electrical conductivity.On the other hand,the support effect result in the upshift of d-band center and electropositivity of Ni sites,which attenuates the energy barrier for the adsorption of OH~àand the formation of*OOH.In consequence,the optimized Ni_(2)P/N,P-C catalysts feature high electrocatalytic activity towards OER(a low overpotential of 252 m V to achieve10 m A cm^(-2))and 10 h long-term stability,the outstanding performance is comparable to most of transition metal catalysts.This work gives a innovative tactics for contriving original OER electrocatalysts,inspirng deeper understanding of fabricating catalysts by combining theoretical simulation and experiment design.
文摘Precise regulation of atomic and electronic structures of two-dimensional tungsten disulfide(WS_(2))is significant for rational design of high-performance and low-cost catalyst for acetylene hydrogenation to ethylene(AHE),yet remains a major challenge.Herein,we report that by substituting a W atom of WS_(2) with a series of transition metal atoms,sulfur vacancy-confined Cu in the WS_(2) basal plane(Cu@WS_(2)-Sv)is theoretically screened as a superior non-noble metal-based catalyst with higher activity,selectivity,and stability for the AHE than other candidates.The co-adsorption of C_(2)H_(2) and H_(2) and hydrogenation of C_(2)H_(3)^(*) to C_(2)H_(4)^(*) are revealed as the key steps establishing a volcano-like activity trend among the candidates,which present Cu@WS_(2)-Sv as the optimum catalyst combined with molecular dynamics and reaction kinetics analyses.The kinetically more favorable desorption of C_(2)H_(4) than the over hydrogenation path validates a higher selectivity toward C_(2)H_(4) over C_(2)H_(6).Furthermore,a machine-learning model reveals the significant effect of d-electron number and electronegativity of the metal heteroatoms in modulating the AHE activity.
基金supported by the National Natural Science Foundation of China(No.52372223)the Science Foundation of Shaanxi Province(No.2023-JC-ZD-03 and 2022GD-TSLD-15)Shaanxi Fundamental Science Research Project for Mathematics and Physics(No.23JSQ005)。
文摘Advancing aqueous zinc-ion batteries(AZIBs)are significantly challenged by the need to find cathode materials that can provide both high capacity and fast reaction kinetics.Tellurium telluride,a topological insulator,has emerged as a promising cathode candidate for AZIBs,garnering increasing attention.However,the complete understanding of its electrochemical reaction mechanism and its unsatisfactory energy storage performance are major obstacles to the practical use.In this work,we synthesize a bimetallic bismuth-nickel telluride with Te vacancies,defined as Bi_(2)Te_(3-x)/NiTe_(2),which forms a topological insulator/topological Dirac semimetal heterostructure through a hydrothermal approach.The electrochemical reaction mechanism of Bi_(2)Te_(3-x)/NiTe_(2),along with its phase and structural changes are elucidated by using in-situ X-ray diffraction,various electrochemical techniques,and ex-situ characterizations.The influences of Bi_(2)Te_(3-x)/NiTe_(2)on the electronic structure,interracial electron transfer,migration barrier,and ion adsorption energy are investigated by using density functional theory calculations.Our findings reveal that Bi_(2)Te_(3-x)/NiTe_(2)exhibits excellent specific capacity,stable cycling,and superior rate capability as a cathode material for AZIBs.Moreover,further studies demonstrate that Bi_(2)Te_(3-x)/NiTe_(2)maintains exceptional performance at low temperatures of-15 and-5℃,and also retains stability and flexibility when integrated into flexible battery packs.
基金supported by the National Natural Science Foundation of China(No.22278097)Heilongjiang Province Universities Basic Scientific Research Business Fee Project(Nos.2022-KYYWF-0568 and 2023-KYYWF-0527)+2 种基金the Natural Science Foundation of Heilongjiang Province(No.YQ2021B004)the Postdoctoral fellowship of Heilongjiang Province(No.LBH-Z23156)the Postdoctoral Fellowship Program of CPSF(No.GZC20233449).
文摘Construction of elaborate configuration to enhance the intrinsic activity of NiMo-based catalyst candidates holds promise for accelerating the hydrogen evolution reaction(HER)kinetics.Herein,a novel cerium-doped NiMo phosphate(labeled as Ce-NiMo(PO_(4))_(0.66))is designed and fabricated via a facile hydrothermal and phosphatization method.A comprehensive characterization reveals that the introduction of the rare metal element cerium with an enriched 4f electronic distribution near the Fermi level modulates the hybridization of the 3d-2p orbitals and optimizes the electronic structure of the NiMo-based phosphate catalysts,which leads to the synergy between the nickel-molybdenum dual sites and the phosphate active unit to synchronously enhance the water dissociation and proton dehydrogenation transfer of the HER process.Consequently,Ce-NiMo(PO_(4))0.66 exhibits excellent alkaline HER performance with overpotentials at 10 and 500 mA·cm^(-2)current densities being only 40 and 295 mV,respectively,and desirable long-term durability at industrial current densities of 500 mA·cm^(-2).An overall hydrazine splitting(OHzS)constructed with Ce-NiMo(PO_(4))_(0.66)as a hydrazine oxidation reaction(HzOR)and HER bifunctional electrocatalyst has been constructed to achieve industrial current densities at the low voltage of 0.92 V,verifying its practical feasibility for sustainable hydrogen production and degradation of hydrazine pollutants.This work highlights that regulating the 3d-2p hybridization state through the inducing 4f orbital electronic state is a feasible means for enhancing the HER activity of transition metal compound catalysts.
基金supported by the National Natural Science Foundation of China(22179034,22279030)the Natural Science Foundation of Heilongjiang Province(ZD2023B002).
文摘The susceptibility of Pt catalyst surfaces to carbon monoxide(CO)poisoning in anodic hydrogen oxidation reaction(HOR)has been a critical constraint on the development of proton exchange membrane fuel cells(PEMFCs).Effectively regulating the electronic structure of Pt to enhance CO resistance is crucial for developing high-performance catalysts with robust anti-poisoning capabilities.Herein,the Pt/W@NCNF featured by Pt nanoparticles and atomical dispersed tungsten(W)sites on N-doped carbon nanofibers is developed for CO tolerance HOR catalyst.The presence of W enables the electron transfer from Pt,which promotes electron rearrangement in the Pt-5d orbitals.It not only optimizes the adsorption of H^(*) and CO^(*)on Pt,but also the OH^(*) intermediates adsorbed on the W sites oxidize the CO*adsorbed on Pt,thereby retaining more active sites for H_(2) adsorption and oxidation.The HOR exchange current density of Pt/W@NCNF reaches 1.35 times that of commercial Pt/C,and the limiting current density decreases by only 3.4%after introducing 1000 ppm CO in H_(2).Notably,the Pt/W@NCNF-based PEMFCs deliver markedly superior performance across a range of CO concentrations.The present study demonstrates that electronic modulation of Pt is an effective strategy for simultaneously achieving resistance to CO and promoted HOR activity.
基金supported by the Natural Science Foundation of Hebei Province(No.B2021208030)the College Students Innovation Training Program(Nos.202206224 and S2021113409001).
文摘Designing and synthesizing cost-effective bifunctional catalysts for overall alkaline water/seawater splitting is still a huge challenge for hydrogen production.Herein,Co/Ni/Fe/Mn based-amorphous high-entropy phosphoxide self-standing electrode(CNFMPO)is synthesized by the facile and fast electrodeposition method.CNFMPO exhibits excellent bifunctional electrocatalytic performances on alkaline water/seawater electrolysis.The hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)overpotentials of CNFMPO in alkaline water/seawater are as low as 43/73 and 252/282 mV to reach a current density of 10 mA cm^(-2),respectively.Additionally,two-electrode electrolyzers with CNFMPO||CNFMPO successfully achieve the current density of 10 mA cm^(-2) at low voltages of 1.54 and 1.56 V for overall alkaline water/seawater splitting,respectively.CNFMPO exhibits satisfactory long-term stability on overall alkaline water/seawater splitting for the surface reconstruction into active metal hydroxide/(oxy)hydroxide,phosphite,and phosphate.Moreover,no hypochlorite is detected during seawater electrolysis for the beneficial chlorite oxidation inhibition of the reconstructed phosphite and phosphate.The excellent catalytic performances of CNFMPO are due to the unique amorphous structure,multi-component synergistic effect,beneficial electronic structure modulation,and surface reconstruction during the catalytic reaction process.Therefore,CNFMPO has shown potential promotion to the development of the water/seawater splitting industry as a promising substituent for noble-metal electrocatalysts.This work provides new insights into the design of efficient bifunctional catalysts for overall water/seawater splitting.
基金financially supported by the National Natural Science Foundation of China(No.22278042)the National Natural Science Foundation of Jiangsu Province(No.BK20240567)+2 种基金the Introduction and Cultivation of Leading Innovative Talents Foundation of Changzhou,Jiangsu Province(No.CQ20220093)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.24KJD530001)the Open Project Program of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science(No.M2024-7),MOE
文摘Regulating the electronic structure and oxygencontaining intermediates adsorption behavior on Fe-based catalysts is of great significance to cope with the sluggish oxygen reduction reaction(ORR)kinetics,but it still remains a great challenge.In this work,Fe atom clusters(Fe_(AC))modified by high-density Cu single atoms(Cu_(SA))in a N,S-doped porous carbon substrate(Fe_(AC)/Cu_(SA)@NCS)is reported for enhanced ORR electrocatalysis.Fe_(AC)/Cu_(SA)@NCS exhibits excellent ORR performance with a half-wave potential(E_(1/2))of 0.911 V,a high four-electron process selectivity and excellent stability.The ORR performance is also verified in the Fe_(AC)/Cu_(SA)@NCS-based Zn-air battery,which shows a high peak power density of 192.67 mW cm^(-2),a higher specific capacity of 808.3 mAh g^(-1)and impressive charge-discharge cycle stability.Moreover,density functional theory calculations show that Cu single atoms synergistically modulate the electronic structure Fe active atoms in Fe atomic clusters,reducing the energy barrier of the rate-determining step(i.e.,*OH desorption)on Fe_(AC)/Cu_(SA)@NCS.This work provides an effective way to regulate the electronic structure of Fe-based catalysts and optimize their electrocatalytic activity based on the introduction of a second metal source.
基金the financial supports of the National Natural Science Foundation of China(Nos.21771169,51801075,and 11722543)the National Key Research and Development Program of China(No.2017YFA0206703)+1 种基金Anhui Provincial Natural Science Foundation(No.BJ2060190077)Re-cruitment Program of Global Expert,and the Fundamental Research Funds for the Central Universities(Nos.WK2060190074,WK2060190081,and WK2310000066).
文摘Molybdenum disulfide (MoS2) has been recognized as one of the most promising candidates to replace precious Pt for hydrogen evolution reaction (HER) catalysis, due to the natural abundance, low cost, tunable electronic properties, and excellent chemical stability. Although notable processes have been achieved in the past decades, their performance is still far less than that of Pt. Searching effective strategies to boosting their HER performance is still the primary goal. In this review, the recent process of the electronic regulation of MoS2 for HER is summarized, including band structure engineering, electronic state modulation, orbital orientation regulation, interface engineering. Last, the key challenges and opportunities in the development of MoS2-based materials for electrochemical HER are also discussed.
文摘Developing effective and practical electrocatalyst under industrial electrolysis conditions is critical for renewable hydrogen production.Herein,we report the self-supporting NiFe LDH-MoS_(x)integrated electrode for water oxidation under normal alkaline test condition(1 M KOH at 25℃)and simulated industrial electrolysis conditions(5 M KOH at 65℃).Such optimized electrode exhibits excellent oxygen evolution reaction(OER)performance with overpotential of 195 and 290 mV at current density of 100 and 400 mA·cm^(-2)under normal alkaline test condition.Notably,only over-potential of 156 and 201 mV were required to achieve the current density of 100 and 400mA·cm^(-2)under simulated industrial electrolysis conditions.No significant degradations were observed after long-term durability tests for both conditions.When using in two-electrode system,the operational voltages of 1.44 and 1.72 V were required to achieve a current density of 10 and 100 mA·cm^(-2)for the overall water splitting test(NiFe LDH-MoS_(x)/INF||20%Pt/C).Additionally,the operational voltage of employing NiFe LDH-MoS_(x)/INF as both cathode and anode merely require 1.52 V at 50mA·cm^(-2)at simulated industrial electrolysis conditions.Notably,a membrane electrode assembly(MEA)for anion exchange membrane water electrolysis(AEMWEs)using NiFe LDH-MoS_(x)/INF as an anode catalyst exhibited an energy conversion efficiency of 71.8%at current density of 400 mA·cm^(-2)in 1 M KOH at 60℃.Further experimental results reveal that sulfurized substrate not only improved the conductivity of NiFe LDH,but also regulated its electronic configurations and atomic composition,leading to the excellent activity.The easy-obtained and cost-effective integrated electrodes are expected to meet the large-scale application of industrial water electrolysis.
基金supported by National Natural Science Foundation of China(no.21978030),and also sponsored by the Chinese Ministry of Education via the Program for New Century Excellent Talents in University(no.NCET-12-0079).
文摘Developing an efficientmethod to improve the photocatalytic efficiency of graphitic carbon nitride(g-C3 N4)is of great significance for solar H2 production.Electronic structure modulation has been considered one of the most crucial strategies to improving the photocatalytic efficiency of g-C_(3)N_(4),but how to efficiently modulate its electronic structure remains a huge challenge.Herein,we,for the first time,report a facile and highly-efficient approach to modulating the electronic structure of g-C_(3)N_(4)through single Ag atom implantation with a Ag_(1)-N_(3)coordination configuration into the g-C_(3)N_(4)framework.
基金the National Natural Science Foundation of China(21671096,21603094 and21905180)the Natural Science Foundation of Guangdong Province(2018B030322001 and 2018A030310225)+4 种基金Shenzhen Peacock Plan(KQTD2016022620054656)Shenzhen Key Laboratory Project(ZDSYS201603311013489)the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen(JCYJ20190809115413414)the Science and Technology Development Fund from Macao SAR(FDCT–0102/2019/A2,FDCT–0035/2019/AGJ and FDCT–0154/2019/A3)the Multi-Year Research Grants(MYRG2017–00027–FST and MYRG2018–00003–IAPME)from the University of Macao。
文摘It is a great challenge to prepare non-noble metal electrocatalysts toward hydrogen evolution reaction(HER)with large current density.Synergistic electronic and morphological structures of the catalyst have been considered as an effective method to improve the catalytic performance,due to the enhanced intrinsic activity and enlarged accessible active sites.Herein,we present novel ternary Co_(1-x)V_(x)P nanoneedle arrays with modulated electronic and morphological structures as an electrocatalyst for highly efficient HER in alkaline solution.The NF@Co1-xVxP catalyst shows a remarkable catalytic ability with low overpotentials of 46 and 226 mV at current densities of 10 and 400 mA cm^(-2),respectively,as well as a small Tafel slope and superior stability.Combining the experimental and computational study,the excellent catalytic performance was attributed to the improved physical and chemical properties(conductivity and surface activity),large active surface area,and fast reaction kinetics.Furthermore,the assembled Co–V based electrolyzer(NF@Co_(1-x)V_(x)–HNNs(+)||NF@Co_(1-x)V_(x)P(-))delivers small full-cell voltages of 1.58,1.75,and 1.92 V at 10,100,and 300 mA cm^(-2),respectively.Our findings provide a systematic understanding on the V–incorporation strategy to promote highly efficient ternary electrocatalysts via synergistic control of morphology and electronic structures.
基金supported by the National Natural Science Foundation of China(21273124,21290190,21290191 and 91333202)the Innovative Research Groups of the National Science Foundation of China(21421064)the National Basic Research Program of China(2013CB933503 and 2015CB655002)
文摘Organic semiconductors are inherently soft,making it possible to increase their mobilities by strains.Such a unique feature can be exploited directly in flexible electronics for improved device performance.The 2,7-dioctyl[1]benzothieno[3,2-b][1]-benzothiophene derivative,C8-BTBT is one of the best small-molecule hole transport materials.Here,we demonstrated its band structure modulation under strains by combining the non-equilibrium molecular dynamics simulations and first-principles calculations.We found that the C8-BTBT lattice undergoes a transition from monoclinic to triclinic crystal system at the temperature below 160 K.Both shear and uniaxial strains were applied to the low-temperature triclinic phase of C8-BTBT,and polymorphism was identified in the shear process.The band width enhancement is up to 8%under 2%of compressive strain along the x direction,and 14%under 4%of tensile strain along the y direction.The band structure modulation of C8-BTBT can be well related to its herringbone packing motifs,where the edge to face and edge to edge pairs constitute two-dimensional charge transport pathways and their electronic overlaps determine the band widths along the two directions respectively.These findings pave the way for utilizing strains towards improved performance of organic semiconductors on flexible substrates,for example,by bending the substrates.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.22272008 and 21872011)the Project of PetroChina Technology Management Department(No.2023ZZ1202).
文摘Heteroatom doping has emerged as an effective strategy to enhance the performance of electrocatalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Traditional doping methods often involve harsh chemical treatments and tedious procedures,hindering their widespread applications.Furthermore,although dynamic surface reconstruction in alkaline media is commonly observed in bimetallic compounds,strategies to regulatethis reconstruction behavior for enhanced HER and OER performances remain inadequately explored.Herein,we report an ultrafast(≤300 s)and mild electrochemical doping approach to fabricate Se-doped NiCo_(2)S_(4) hollow nanoarrays on carbon fiber papers(a-NiCo_(2)(S_(1-x)Se_(x))_(4)),investigating the role of Se in enhancing overall water splitting performance.Under HER conditions,a-NiCo_(2)(S_(1-x)Se_(x))_(4) demonstrates remarkable stability,with Se tuning the electronic structure to optimize intermediate adsorption and facilitate H_(2)O dissociation.While under OER conditions,Se doping lowers the energy barrier for reconstruction and promotes transformation into active Se,S co-doped Ni_(0.33)Co_(0.67)OOH nanosheets.The optimal samples exhibit superior HER and OER activity,requiring a cell voltage of 1.578 V to deliver a current density of 100 mA·cm^(-2) for overall water spltting.This work not only introduces a facile method for Se doping but also provides comprehensive insights into the structure-composition-activity relationship for Se-doped bimetallic sulfide.
基金supported by the Natural Science Foundation of Tianjin(24JCZDJC01080)the National Natural Science Foundation of China(52372218)the National Key Research and Development Program of China(2025YFE0109500).
文摘Alloying Pt with non-noble metals is effective for optimizing the activity of Pt-based electrocatalysts.However,the development of high-activity and stable hydrogen electrocatalysts remains challenging owing to the random elemental distribution and weak interatomic bonding in alloys.Herein,we reported a Pt_(2)CoNi intermetallic nanocatalyst rich in surface microstrain for high-performance hydrogen electrocatalysis.The superlattice ordering crystalline structure ensures the specific positions of atoms in this nanocatalyst,resulting in the alternating arrangement of Pt and Co/Ni atoms.In one nanoparticle,multiple Pt_(2)CoNi grains are arranged along different grain orientations,which generates abundant surface microstrain due to the discrepancy of intermetallic lattice parameters.The unique crystal structure effectively modulates the electron distribution of Pt_(2)CoNi intermetallic nanocatalyst.The active sites of this nanocatalyst exhibit downshifted d-band centers,leading to accelerated hydrogen adsorption/desorption behavior.Resultantly,the Pt_(2)CoNi intermetallic nanocatalyst demonstrates impressive bifunctional hydrogen electrocatalytic capabilities for hydrogen evolution reaction(mass activity of 1.02 A/mg Pt and η_(10) variation of 3.7 mV after 10,000 cycles)and hydrogen oxidation reaction(kinetic mass activity of 4.08 A/mg Pt and 97.3%activity retention after 12 h operating at 0.1 V vs.RHE).This work provides a promising route for the development of efficient nanocatalysts with ingenious crystal structures.
基金financially supported by the National Natural Science Foundation of China(No.22375019)Beijing Institute of Technology Research Fund Program for Young Scholars(No.3090012221909)
文摘CO_(2)electroreduction(CO_(2)RR)represents a promising negative-carbon technology,which is in urgent need for efficient and high-selectivity catalysts.Here,a support control strategy is employed for precise surface engineering of charge-asymmetry nanocluster catalyst(CuZnSCN),in which zinc and copper atoms together form a metal cluster loaded on sulfur and nitrogen co-etched carbon matrix.The synergistic promotion mechanism of CO_(2)RR by Cu–Zn atom interactions and sulfur–nitrogen atom doping was investigated.A CO partial current density of 74.1 mA cm^(-2)was achieved in an alkaline electrolyte,as well as a considerable CO Faraday efficiency of 97.7%.In situ XAS(X-ray absorption spectroscopy)showed that the stabilization of Cu^(+)and Zn^(2+)species in the nanoclusters and doped sulfur atoms during the CO_(2)RR process contributes to the sustained adsorption of protons and the generation and conversion of the CO.This work verifies the possibility of metal-support and intermetallic interactions to synergistically enhance electrochemical catalytic performance and provides ideas for further bimetallic cluster catalyst development.
基金financially supported by the National Key R&D Program of China(2018YFB1502401)the National Natural Science Foundation of China(91961111,22171074,21601055,U20A20250,21805073,and 22005161)+3 种基金the Natural Science Foundation of Heilongjiang Province(ZD2021B003)China Postdoctoral Science Foundation(2017M611406)the Postdoctoral Science Foundation of Heilongjiang Province(LBH-Z16175)the Scientific Research Funds of University Affiliated to Heilongjiang Province(KJCX201913)。
文摘Multi-interface engineering is deemed as an effective strategy to boost catalytic activity via electronic structure modulation.However,it is still a big challenge due to the phase-separation tendency.Herein,we designed CoP-WP heterojunctions with multi-touch interfaces using Co_(8)W_(18),a definite structure polyoxometalate-based polynuclear cobalt molecular cluster,as a precursor.The Co P-WP heterojunctions anchored on reduced graphene oxide(Co P-WP/r GO)were obtained by growing Co_(8)W_(18)on GO followed by phosphorization.The intrinsic{Co-O-W}coordination modes in Co_(8)W_(18)are conducive to the formation of the multiple interfaces between CoP and WP.The abundant intimate interfaces in Co P-WP heterojunctions promote the electron transfer from WP to Co P,thus regulating the interfacial electronic structure and optimizing the hydrogen adsorption free energy(ΔGH*),as verified by X-ray photoelectron spectroscopy analysis and theoretical calculations.Furthermore,the integration of r GO provides Co P-WP/r GO with a large surface area and high conductivity,aiding mass transport and charge transfer.Co P-WP/r GO exhibits remarkable hydrogen evolution reaction(HER)activity with low overpotentials of 96,130,and 138 m V at 10 m A cm^(-2)in alkaline,acidic and neutral media,respectively,and has long-term durability.Our discovery provides an opportunity to design heterojunction materials with multi-coupled interfaces at low-cost and efficient HER catalysts.
基金supported by the National Key Research&Development Program of China(2021YFA1501500,2022YFE0115900)the National Natural Science Foundation of China(No,22225902,U22A20436).
文摘The escalating emissions of greenhouse gases into atmosphere have precipitated a host of ecology and environ-mental concerns.Electrochemical reduction of CO_(2)(CO_(2)RR)is emerging as a sustainable solution for effectively addressing these issues.Leveraging the cost-effectiveness and eco-friendly attributes,Bi-based catalysts have been extensively studied with the purpose of enhancing activity and stability.This minireview majorly overviews the research advancements in Bi-based catalysts for CO_(2)electrocatalysis towards formic acid/formate production.Initially,we offer a concise overview of the reaction pathways involved in electrochemical CO_(2)reduction.Sub-sequently,we summarize the progress in various types of electrolysis cells and associated influencing factors.Specifically,the electronic structure modulation strategies of Bi-based catalysts including oxide-derived bismuth,bismuth-based chalcogenides,bimetallic and high-entropy compounds,etc.have been highlighted.Future research endeavors are poised to delve deeper into comprehending system dynamics during the reaction process to achieve exemplary stability high energy efficiency under industrial conditions.
基金supported by the National Key R&D Program of China(Nos.2017YFA0208300 and 2017YFA0700104)the National Natural Science Foundation of China(Nos.21522107 and 21671180)the DNL Cooperation Fund,CAS(No.NDL201918).
文摘Developing highly active single-atom sites catalysts for electrochemical reduction of CO_(2) is an effective and environmental-friendly strategy to promote carbon-neutral energy cycle and ameliorate global climate issues.Herein,we develop an atomically dispersed N,S co-coordinated bismuth atom sites catalyst(Bi-SAs-NS/C)via a cation and anion simultaneous diffusion strategy for electrocatalytic CO_(2) reduction.In this strategy,the bonded Bi cation and S anion are simultaneously diffused into the nitrogen-doped carbon layer in the form of Bi2S3.Then Bi is captured by the abundant N-rich vacancies and S is bonded with carbons.support at high temperature,formed the N,S co-coordinated Bi sites.Benefiting from the simultaneous diffusion of Bi and S,different electronegative N and S can be effectively co-coordinated with Bi,forming the uniform Bi-N_(3)S/C sites.The synthesized.Bi-SAs-NS/C exhibits a high selectivity towards CO with over 88%Faradaic efficiency in a wide potential range,and achieves a maximum FE_(CO)of 98.3%at-0.8 V vs.RHE with a current density of 10.24 mA·cm^(-2),which can keep constant with negligible degradation in 24 h continuous electrolysis.Experimental results and theoretical calculations reveal that the significantly improved catalytic performance of Bi-SAs-NS/C than Bi-SAs-N/C is ascribed to the replacement of one coordinated-N with low electronegative S in Bi-N_(4)C center,which can greatly reduce the energy barrier of the intermediate formation in rate-limiting step and increase the reaction kinetics.This work provides an effective strategy for rationally designing highly active single-atom sites;catalysts for efficient electrocatalysis with optimized electronic structure.