The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracte...The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.展开更多
We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculati...We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculation.It is found that the 5f electronic correlations inβ-uranium are moderate.More interestingly,their strengths are site selective,depending on the local atomic environment of the present uranium atom.As a consequence,the occupation matrices and partial 5f density of states ofβ-uranium manifest site dependence.In addition,the complicate experimental structure ofβ-uranium could be well reproduced within this theoretical framework.展开更多
The conversion rules under which an algebraic expression can be obtained from a corresponding photoionizationGoldstone diagram have been given systematically in the present work.The electronic correlations in thephoto...The conversion rules under which an algebraic expression can be obtained from a corresponding photoionizationGoldstone diagram have been given systematically in the present work.The electronic correlations in thephotoionization processes then could be studied diagrammatically.The application to atomic scandium shows that thepresent theoretical scheme can give reasonable photoionization cross sections,which agree well with the experimentalresults.展开更多
We present a comprehensive electron momentum spectroscopy study on the electronic structure of trifluorobromomethane.The binding energy spectrum and electron momentum profiles of the entire outer-valence orbitals and ...We present a comprehensive electron momentum spectroscopy study on the electronic structure of trifluorobromomethane.The binding energy spectrum and electron momentum profiles of the entire outer-valence orbitals and the first inner-valence orbital along with several shake-up states were measured by using a high-sensitivity(e,2e)apparatus at an electron impact energy of 1213 eV.Theoretical calculations employing the density functional theory with B3LYP hybrid functional and the symmetry-adapted cluster configuration-interaction method were performed to interpret the experimental results.Important effects of electron correlations in the initial neutral and final ionic states on the electron momentum profiles have been observed.展开更多
The kagome lattice has garnered significant attention due to its ability to host quantum spin Fermi liquid states.Recently,the combination of unique lattice geometry,electron–electron correlations,and adjustable magn...The kagome lattice has garnered significant attention due to its ability to host quantum spin Fermi liquid states.Recently,the combination of unique lattice geometry,electron–electron correlations,and adjustable magnetism in solid kagome materials has led to the discovery of numerous fascinating quantum properties.These include unconventional superconductivity,charge and spin density waves(CDW/SDW),pair density waves(PDW),and Chern insulator phases.These emergent states are closely associated with the distinctive characteristics of the kagome lattice's electronic structure,such as van Hove singularities,Dirac fermions,and flat bands,which can exhibit exotic quasi-particle excitations under different symmetries and magnetic conditions.Recently,various quantum kagome materials have been developed,typically consisting of kagome layers stacked along the z-axis with atoms either filling the geometric centers of the kagome lattice or embedded between the layers.In this topical review,we begin by introducing the fundamental properties of several kagome materials.To gain an in-depth understanding of the relationship between topology and correlation,we then discuss the complex phenomena observed in these systems.These include the simplest kagome metal T_(3)X,kagome intercalation metal T X,and the ternary compounds AT_(6)X_(6)and RT_(3)X_(5)(A=Li,Mg,Ca,or rare earth;T=V,Cr,Mn,Fe,Co,Ni;X=Sn,Ge;R=K,Rb,Cs).Finally,we provide a perspective on future experimental work in this field.展开更多
For the observed line at 799.23°A in tungsten EBIT experiment,which was assigned to be^(3)F_(4)^(o)−^(3)F_(3)^(o)([Ar]4s^(2)4p^(5)4d)of W^(38+)ion,there were noticeable deviations for most calculated wavelengths ...For the observed line at 799.23°A in tungsten EBIT experiment,which was assigned to be^(3)F_(4)^(o)−^(3)F_(3)^(o)([Ar]4s^(2)4p^(5)4d)of W^(38+)ion,there were noticeable deviations for most calculated wavelengths from the measured value.To clarify this issue,we carry out an extensive calculation for energy levels and transition properties of W^(38+)ion using the multi-configuration Dirac–Hartree–Fock and relativistic configuration interaction method,in which more deeper inner core electron correlations are included,and different forms of Breit interaction as well as quantum electrodynamics corrections are investigated.It is found that the inner core electron correlations can affect the total energy of levels,while only slightly modify the excited energy of levels in 4s^(2)4p^(5)4d complex.The present calculated wavelengths agree with the corresponding measured values excellently except the line at 799.23Å.Thus we are strongly suspicious this line should be misidentified,and suggest that new experiment with higher resolution and spectra analysis based on more accurate atomic data should be performed for W^(38+)ion.展开更多
Recently,Lee et al.claimed the experimental discovery of room-temperature ambient-pressure super-conductivity in a Cu-doped lead-apatite(LK-99)(arXiv:2307.12008,arXiv:2307.12037).Remarkably,the claimed superconductivi...Recently,Lee et al.claimed the experimental discovery of room-temperature ambient-pressure super-conductivity in a Cu-doped lead-apatite(LK-99)(arXiv:2307.12008,arXiv:2307.12037).Remarkably,the claimed superconductivity can persist up to 400 K at ambient pressure.Despite the experimental im-plication,the electronic structure of LK-99 has not yet been studied.Here,we investigate the electronic structures of LK-99 and its parent compound using first-principles calculations,aiming to elucidate the doping effects of Cu.Our results reveal that the parent compound Pb_(10)(PO_(4))_(6)O is an insulator,while Cu doping induces an insulator-metal transition and thus volume contraction.The band structures of LK-99 around the Fermi level are featured by a half-filled flat band and a fully-occupied flat band.These two very flat bands arise from both the 2p orbitals of 1/4-occupied O atoms and the hybridization of the 3d orbitals of Cu with the 2p orbitals of its nearest-neighboring O atoms.Interestingly,we observe four van Hove singularities on these two flat bands.Furthermore,we show that the flat band structures can be tuned by including electronic correlation effects or by doping different elements.We find that among the considered doping elements(Ni,Cu,Zn,Ag,and Au),both Ni and Zn doping result in the gap opening,whereas Au exhibits doping effects more similar to Cu than Ag.Our work establishes a foundation for fu-ture studies to investigate the role of unique electronic structures of LK-99 in its claimed superconducting properties.展开更多
The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the in...The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the interactions betwee π-electron of aromatic maerocycles or metal ion of complexes with the sub- stituents on β-position of benzene ring for porphyrin-like maerocyclic compounds.展开更多
The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)tran...The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)transition occurring near the superconducting dome.Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system.However,owing to the presence of La4Ni3O10 and other intergrowth phases in La_(3)Ni_(2)O_(7-δ)samples,extracting the intrinsic information from the La_(3)Ni_(2)O_(7) phase is challenging.In this study,we employed ^(139)La nuclear quadrupole resonance(NQR)measurements to eliminate the influence of other structural phases in the sample and obtain microscopic insights into the DW transition in La_(3)Ni_(2)O_(7-δ).Below the DW transition temperature T_(DW)∼153 K,we observe a distinct splitting in the±5/2↔±7/2 transition of the NQR resonance peak at the La(2)site,while only a line broadening is seen in the±3/2↔±5/2 transition peak.Through further analysis of the spectra,we show that the line splitting is due to a unidirectional charge modulation.A magnetic line broadening is also observed below T_(DW),accompanied by a large enhancement of the spin-lattice relaxation rate,indicating the formation of magnetically ordered moments in the DW state.Our results suggest a simultaneous formation of charge-and spin-density wave orders in La_(3)Ni_(2)O_(7-δ),thereby offering critical insights into the electronic correlations in Ni-based superconductors.展开更多
Iron-based superconductors(FeSCs)feature a complex phase diagram,and their diverse cleavage terminations offer a versatile platform for modulating surface electronic states and investigating the underlying superconduc...Iron-based superconductors(FeSCs)feature a complex phase diagram,and their diverse cleavage terminations offer a versatile platform for modulating surface electronic states and investigating the underlying superconducting mechanisms.In this study,we explore the surface modulation of KCa_(2)Fe_(4)As_(4)F_(2)using scanning tunneling microscopy/spectroscopy.Cryogenically cleaved surfaces reveal multiple configurations,including√2×√2 reconstruction,1×2 and 1×3 stripes,as well as nanoscale vacancies.Reducing potassium coverage induces hole doping,which shifts the density of states peak toward the Fermi level and suppresses the superconducting gap from 4.8 meV to 3.2 meV.This behavior is reminiscent of the Van Hove singularity observed in hole-doped 122-type FeSCs.The band structure does not undergo a simple rigid shift,and the evolution of superconductivity can be attributed to the interplay between surface carriers and electronic correlations.Additionally,a V-shaped gap is observed at a unique location preserving the FeAs bilayer structure,where interlayer coupling effects are likely involved.The diversity of surface structures and electronic states in K12442 enhances our understanding of FeSCs and facilitates the modulation and application of FeAs superconducting layers.展开更多
Two-electron atoms have been investigated near threshold of double escape within the framework of hyperspherical coordinates. A particularly useful set of hyperspherical angles has been used. It is well known for many...Two-electron atoms have been investigated near threshold of double escape within the framework of hyperspherical coordinates. A particularly useful set of hyperspherical angles has been used. It is well known for many years that the hyperradial motion is nearly separable from the hyperspherical angular motion. Therefore, the Born-Oppenheimer separation method should be useful. However, the success of that method in molecular physics is based on the small mass ratio, electron mass to nuclear mass. In the atomic application such a small parameter does not exist. Nevertheless the method works surprisingly well in the lower part of the spectrum. For increasing excitation energy the method becomes shaky. Near ionization threshold, it breaks even down. The author will present elsewhere an improved Born-Oppenheimer method. First pilot developments and comparison with the experimental situation are presented already here. Inclusion of a momentum-momentum radial coupling delivers an improved basis. We show that our extended Born-Oppenheimer approach leads to a deformation of the whole potential energy surface during the collision. In consequence of this deformation we outline a quantum derivation of the Wannier threshold cross section law, and we show that (e, 2e) angular distribution data are strongly influenced by that surface deformation. Finally, we present a mechanism for electron pair formation and decay leading to a supercurrent independent of the temperature. Our framework can be extended to more than two electrons, say 3 or 4. We conclude that our improved Born-Oppenheimer method <a href="#ref.1">[1]</a> is expected not only to deliver better numerical data, but it is expected to describe also the Wannier phenomenon. The idea of the new theory together with first qualitative results is presented in this paper.展开更多
In this study, the energy for the ground state of helium and a few helium-like ions (Z=1-6) is computed variationally by using a Hylleraas-like wavefunction. A four-parameters wavefunction, satisfying boundary condi...In this study, the energy for the ground state of helium and a few helium-like ions (Z=1-6) is computed variationally by using a Hylleraas-like wavefunction. A four-parameters wavefunction, satisfying boundary conditions for coalescence points, is combined with a Hylleraas-like basis set which explicitly incorporates r12 interelectronic distance. The main contribution of this work is the introduction of modified correlation terms leading to the definition of integral transforms which provide the calculation of expectation value of energy to be done analytically over single-particle coordinates instead of Hylleraas coordinates.展开更多
Strong feld-induced nonsequential double ionization(NSDI)is a signifcant multi-electron phenomenon that provides crucial insights into understanding electron correlation and multiple ionization of atoms and molecules,...Strong feld-induced nonsequential double ionization(NSDI)is a signifcant multi-electron phenomenon that provides crucial insights into understanding electron correlation and multiple ionization of atoms and molecules,but it is typically unattainable in a circularly polarized laser pulse,especially for long-wavelength lasers.We present evidence that NSDI can occur in the presence of a near-infrared or beyond laser pulse by introducing a bowtie-nanotip.The laser-induced local plasmon can alter the local ellipticity of the feld,thereby enabling NSDI through elliptical trajectories that facilitate recollisions with parent atoms.An oval-shaped momentum distribution of recoiled ions provides evidence for the modifcation of trajectories by the aligned nanotips.Our study introduces an innovative control knob to manipulate NSDI and electron dynamics through the utilization of nanostructures.展开更多
The Landé g factors of Ba+are very important in high-precision measurement physics.The wave functions,energy levels,and Landég factors for the 6s ^(2)S_(1/2) and 5d 2D_(3/2,5/2) states of Ba+ions were calcul...The Landé g factors of Ba+are very important in high-precision measurement physics.The wave functions,energy levels,and Landég factors for the 6s ^(2)S_(1/2) and 5d 2D_(3/2,5/2) states of Ba+ions were calculated using the multi-configuration Dirac-Hartree-Fock method and the model-quantum electrodynamics(QED)method.The contributions of the electron correlation effects and QED effects were discussed in detail.The transition energies are in excellent agreement with the experimental results,with differences of approximately 5 cm^(−1).The presently calculated g factor of 2.0024905(16)for the 6S1/2 agrees very well with the available experimental and theoretical results,with a difference at a level of 10^(−6).For the 5D_(3/2,5/2) states,the present results of 0.7993961(126)and 1.2003942(190)agree with the experimental results of 0.7993278(3)[Phys.Rev.A 541199(1996)]and 1.20036739(14)[Phys.Rev.Lett.124193001(2020)]very well,with differences at the level of 10−5.展开更多
Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimen...Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimensional lattice of corner-sharing triangles—provide a fertile ground for investigating exotic quantum phenomena,driven by geometric frustration,electronic correlation,and topology.In this review,we present an overview of recent ARPES studies on transition-metal kagome materials.We first outline the fundamental features of their electronic structures,including van Hove singularities,Dirac points,and flat bands,and discuss the novel quantum states that arise from many-body interactions within the kagome lattice.We then highlight key ARPES investigations into these unique electronic structures,detailing their manifestation and associated quantum states in representative kagome materials.Finally,we offer a forward-looking perspective on the potential of ARPES to uncover new quantum phenomena and its broader implications for the study of underlying physics in kagome materials.展开更多
With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our resu...With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.展开更多
A four-body distorted-wave approximation is applied for theoretical analysis of the fully differential cross sections(FDCS) for proton-impact single ionization of helium atoms in their ground states. The nine-dimens...A four-body distorted-wave approximation is applied for theoretical analysis of the fully differential cross sections(FDCS) for proton-impact single ionization of helium atoms in their ground states. The nine-dimensional integrals for the partial amplitudes are analytically reduced to closed-form expressions or some one-dimensional integrals which can be easily calculated numerically. Calculations are performed in the scattering and perpendicular planes. The influence of the target static electron correlations on the process is investigated using a number of different bound-state wave functions for the ground state of the helium targets. An illustrative computation is performed for 75-ke V proton–helium collisions and the obtained results are compared with experimental data and other theoretical predictions. Although for small momentum transfers, the comparison shows a reasonable agreement with experiments in the scattering and perpendicular planes, some significant discrepancies are still present at large momentum transfers in these planes. However, our results are compatible and for some cases, better than those of the other sophisticated calculations.展开更多
Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of t...Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of the ellipticity, not only the first electron to return but also the later return of tunneled electrons contribute significantly to NSDI. We mainly discuss two kinds of events of NSDI originating from the first and the second return separately. For the NSDI resulting from the recollision of the first return, the correlated electron momentum spectrum along the long axis of the laser polarization plane reveals an obvious V-like shape, located at the first and third quadrant. However, for the NSDI resulting from the recollision of the second return, the momenta of two electrons are distributed in the four quadrants uniformly. By analysing the trajectories of these two kinds, we find that the recollision energy and the laser phase at recollision are different for the first and second returning trajectories, which are responsible for the difference in the correlated behavior of the final electron momentum.展开更多
Superlattice potentials are theoretically predicted to modify the single-particle electronic structures. The resulting Coulomb-interaction-dominated low-energy physics would generate highly novel many-body phenomena. ...Superlattice potentials are theoretically predicted to modify the single-particle electronic structures. The resulting Coulomb-interaction-dominated low-energy physics would generate highly novel many-body phenomena. Here,by in situ tunneling spectroscopy, we show the signatures of superstructure-modulated correlated electron states in epitaxial bilayer graphene(BLG) on 6H-Si C(0001). As the carrier density is locally quasi-‘tuned’ by the superlattice potentials of a 6 × 6 interface reconstruction phase, the spectral-weight transfer occurs between the two broad peaks flanking the charge-neutral point. Such a detected non-rigid band shift beyond the single-particle band description implies the existence of correlation effects, probably attributed to the modified interlayer coupling in epitaxial BLG by the 6×6 reconstruction as in magic-angle BLG by the moiré potentials. Quantitative analysis suggests that the intrinsic interface reconstruction shows a high carrier tunability of ~1/2 filling range, equivalent to the back gating by a voltage of ~70 V in a typical gated BLG/SiO_(2)/Si device. The finding in interfacemodulated epitaxial BLG with reconstruction phase extends the BLG platform with electron correlations beyond the magic-angle situation, and may stimulate further investigations on correlated states in graphene systems and other van der Waals materials.展开更多
The coordination-dependent force fleld of TersofF for covalently bonded Si has been used tocalculate the cleavage force as a function of interplanar separation and hence to estimate surfaceenergies. This force field i...The coordination-dependent force fleld of TersofF for covalently bonded Si has been used tocalculate the cleavage force as a function of interplanar separation and hence to estimate surfaceenergies. This force field is already fitted to density functional results. The relation to bond-breaking and electron correlation will be emphasized. Finnis-Sinclair-type many-body potentialshave then been used to treat some d-electron metals. In particular, results for cleavage forcein bcc Fe will be presented, and also some calculations as two perfectly planar Fe surfaces arerubbed together' at different interplanar separations. Finally, lattice dynamical models for thesteady-state propagation of a screw dislocation, and then of a crack, will be used, again within abond-breaking type of force field. For the screw dislocation propagation. a solitary wave equationis shown to follow in the 'almost continuum' limit. Energy radiated by phonons as the dislocationmoves can thereby be calculated.展开更多
基金supported by the National Key Research and Development Program of China(Grant Nos.2022YFA1403400,2019YFA0704900,and 2022YFA1403800)the Fundamental Science Center of the National Natural Science Foundation of China(Grant No.52088101)+4 种基金the National Natural Science Foundation of China(Grant Nos.11974394 and 12174426)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant No.XDB33000000)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-057)the Synergetic Extreme Condition User Facility(Grant No.SECUF)the Scientific Instrument Developing Project of CAS(Grant No.ZDKYYQ20210003).
文摘The kagome lattice system has been identified as a fertile ground for the emergence of a number of new quantumstates,including superconductivity,quantum spin liquids,and topological electronic states.This has attracted significantinterest within the field of condensed matter physics.Here,we present the observation of an anomalous Hall effect in aniron-based kagome antiferromagnet LuFe_(6)Sn_(6),which implies a non-zero Berry curvature in this compound.By means ofextensive magnetic measurements,a high Neel temperature,T_(N)=552 K,and a spin reorientation behavior were identifiedand a simple temperature-field phase diagram was constructed.Furthermore,this compound was found to exhibit a largeSommerfeld coefficient ofγ=87 mJ·mol^(-1)·K^(-2),suggesting the presence of a strong electronic correlation effect.Ourresearch indicates that LuFe_(6)Sn_(6)is an intriguing compound that may exhibit magnetism,strong correlation,and topologicalstates.
基金supported by the National Natural Science Foundation of China (Grant Nos.22176181,11874329,11934020,and U1930121)the Foundation of the President of China Academy of Engineering Physics (Grant No.YZJJZQ2022011)the Foundation of Science and Technology on Surface Physics and Chemistry Laboratory (Grant No.WDZC202101)。
文摘We investigate the electronic structure ofβ-uranium,which has five nonequivalent atomic sites in its unit cell,by means of the density functional theory plus Hubbard-U correction with U from linear response calculation.It is found that the 5f electronic correlations inβ-uranium are moderate.More interestingly,their strengths are site selective,depending on the local atomic environment of the present uranium atom.As a consequence,the occupation matrices and partial 5f density of states ofβ-uranium manifest site dependence.In addition,the complicate experimental structure ofβ-uranium could be well reproduced within this theoretical framework.
基金The present study was part of The University Science & Technology Planning Program of Shandong Province under Grant No. J10LB60 (self-financing)partly supported by the Natural Science Foundation of Shandong Province under Grant No. ZR2011AM010 and 2009 Technology Innovation Fund (09L026) of Ludong University
文摘The conversion rules under which an algebraic expression can be obtained from a corresponding photoionizationGoldstone diagram have been given systematically in the present work.The electronic correlations in thephotoionization processes then could be studied diagrammatically.The application to atomic scandium shows that thepresent theoretical scheme can give reasonable photoionization cross sections,which agree well with the experimentalresults.
基金Project supported by the National Natural Science Foundation of China(Grant No.12127804).
文摘We present a comprehensive electron momentum spectroscopy study on the electronic structure of trifluorobromomethane.The binding energy spectrum and electron momentum profiles of the entire outer-valence orbitals and the first inner-valence orbital along with several shake-up states were measured by using a high-sensitivity(e,2e)apparatus at an electron impact energy of 1213 eV.Theoretical calculations employing the density functional theory with B3LYP hybrid functional and the symmetry-adapted cluster configuration-interaction method were performed to interpret the experimental results.Important effects of electron correlations in the initial neutral and final ionic states on the electron momentum profiles have been observed.
基金Project supported by the National Natural Science Foundation of China(Grant No.12204536)the Fundamental Research Funds for the Central Universitiesthe Research Funds of People’s Public Security University of China(PPSUC)(Grant No.2023JKF02ZK09)。
文摘The kagome lattice has garnered significant attention due to its ability to host quantum spin Fermi liquid states.Recently,the combination of unique lattice geometry,electron–electron correlations,and adjustable magnetism in solid kagome materials has led to the discovery of numerous fascinating quantum properties.These include unconventional superconductivity,charge and spin density waves(CDW/SDW),pair density waves(PDW),and Chern insulator phases.These emergent states are closely associated with the distinctive characteristics of the kagome lattice's electronic structure,such as van Hove singularities,Dirac fermions,and flat bands,which can exhibit exotic quasi-particle excitations under different symmetries and magnetic conditions.Recently,various quantum kagome materials have been developed,typically consisting of kagome layers stacked along the z-axis with atoms either filling the geometric centers of the kagome lattice or embedded between the layers.In this topical review,we begin by introducing the fundamental properties of several kagome materials.To gain an in-depth understanding of the relationship between topology and correlation,we then discuss the complex phenomena observed in these systems.These include the simplest kagome metal T_(3)X,kagome intercalation metal T X,and the ternary compounds AT_(6)X_(6)and RT_(3)X_(5)(A=Li,Mg,Ca,or rare earth;T=V,Cr,Mn,Fe,Co,Ni;X=Sn,Ge;R=K,Rb,Cs).Finally,we provide a perspective on future experimental work in this field.
基金supported by the Science Challenge Project of China Academy of Engineering Physics(CAEP)(Grant No.TZ2018005)the National Natural Science Foundation of China(Grant Nos.12474277,12374259,12104095,12074081,and 12074082).
文摘For the observed line at 799.23°A in tungsten EBIT experiment,which was assigned to be^(3)F_(4)^(o)−^(3)F_(3)^(o)([Ar]4s^(2)4p^(5)4d)of W^(38+)ion,there were noticeable deviations for most calculated wavelengths from the measured value.To clarify this issue,we carry out an extensive calculation for energy levels and transition properties of W^(38+)ion using the multi-configuration Dirac–Hartree–Fock and relativistic configuration interaction method,in which more deeper inner core electron correlations are included,and different forms of Breit interaction as well as quantum electrodynamics corrections are investigated.It is found that the inner core electron correlations can affect the total energy of levels,while only slightly modify the excited energy of levels in 4s^(2)4p^(5)4d complex.The present calculated wavelengths agree with the corresponding measured values excellently except the line at 799.23Å.Thus we are strongly suspicious this line should be misidentified,and suggest that new experiment with higher resolution and spectra analysis based on more accurate atomic data should be performed for W^(38+)ion.
文摘Recently,Lee et al.claimed the experimental discovery of room-temperature ambient-pressure super-conductivity in a Cu-doped lead-apatite(LK-99)(arXiv:2307.12008,arXiv:2307.12037).Remarkably,the claimed superconductivity can persist up to 400 K at ambient pressure.Despite the experimental im-plication,the electronic structure of LK-99 has not yet been studied.Here,we investigate the electronic structures of LK-99 and its parent compound using first-principles calculations,aiming to elucidate the doping effects of Cu.Our results reveal that the parent compound Pb_(10)(PO_(4))_(6)O is an insulator,while Cu doping induces an insulator-metal transition and thus volume contraction.The band structures of LK-99 around the Fermi level are featured by a half-filled flat band and a fully-occupied flat band.These two very flat bands arise from both the 2p orbitals of 1/4-occupied O atoms and the hybridization of the 3d orbitals of Cu with the 2p orbitals of its nearest-neighboring O atoms.Interestingly,we observe four van Hove singularities on these two flat bands.Furthermore,we show that the flat band structures can be tuned by including electronic correlation effects or by doping different elements.We find that among the considered doping elements(Ni,Cu,Zn,Ag,and Au),both Ni and Zn doping result in the gap opening,whereas Au exhibits doping effects more similar to Cu than Ag.Our work establishes a foundation for fu-ture studies to investigate the role of unique electronic structures of LK-99 in its claimed superconducting properties.
文摘The properties of absorption spectra are presented and the linear correlations of Hammett constants with the 0-0 transition energy(E_(o,o))of S_←S_o, and the ratios of oscillator strength(f/f)are used to probe the interactions betwee π-electron of aromatic maerocycles or metal ion of complexes with the sub- stituents on β-position of benzene ring for porphyrin-like maerocyclic compounds.
基金supported by the National Key Research and Development Projects of China(Grant Nos.2023YFA1406103,2024YFA1611302,2024YFA1409200,and 2022YFA1403402)the National Natural Science Foundation of China(Grant Nos.12374142,12304170,12025408,12404179,and U23A6003)+2 种基金Beijing National Laboratory for Condensed Matter Physics(Grant No.2024BNLCMPKF005)the Chinese Academy of Sciences President’s International Fellowship Initiative(Grant No.2024PG0003)supported by the Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘The recent discovery of superconductivity in La_(3)Ni_(2)O_(7-δ)with a transition temperature Tc close to 80 K at high pressures has attracted significant attention,due particularly to a possible density wave(DW)transition occurring near the superconducting dome.Identifying the type of DW order is crucial for understanding the origin of superconductivity in this system.However,owing to the presence of La4Ni3O10 and other intergrowth phases in La_(3)Ni_(2)O_(7-δ)samples,extracting the intrinsic information from the La_(3)Ni_(2)O_(7) phase is challenging.In this study,we employed ^(139)La nuclear quadrupole resonance(NQR)measurements to eliminate the influence of other structural phases in the sample and obtain microscopic insights into the DW transition in La_(3)Ni_(2)O_(7-δ).Below the DW transition temperature T_(DW)∼153 K,we observe a distinct splitting in the±5/2↔±7/2 transition of the NQR resonance peak at the La(2)site,while only a line broadening is seen in the±3/2↔±5/2 transition peak.Through further analysis of the spectra,we show that the line splitting is due to a unidirectional charge modulation.A magnetic line broadening is also observed below T_(DW),accompanied by a large enhancement of the spin-lattice relaxation rate,indicating the formation of magnetically ordered moments in the DW state.Our results suggest a simultaneous formation of charge-and spin-density wave orders in La_(3)Ni_(2)O_(7-δ),thereby offering critical insights into the electronic correlations in Ni-based superconductors.
基金supported by the National Key Research and Development Program of China(Grant Nos.2024YFA1611103 and 2022YFA1403203)the Innovation Program for Quantum Science and Technology(Grant Nos.2024ZD0301300 and 2021ZD0302802)the National Natural Science Foundation of China(Grant Nos.12474128,12374133,12204008,and 12104004)。
文摘Iron-based superconductors(FeSCs)feature a complex phase diagram,and their diverse cleavage terminations offer a versatile platform for modulating surface electronic states and investigating the underlying superconducting mechanisms.In this study,we explore the surface modulation of KCa_(2)Fe_(4)As_(4)F_(2)using scanning tunneling microscopy/spectroscopy.Cryogenically cleaved surfaces reveal multiple configurations,including√2×√2 reconstruction,1×2 and 1×3 stripes,as well as nanoscale vacancies.Reducing potassium coverage induces hole doping,which shifts the density of states peak toward the Fermi level and suppresses the superconducting gap from 4.8 meV to 3.2 meV.This behavior is reminiscent of the Van Hove singularity observed in hole-doped 122-type FeSCs.The band structure does not undergo a simple rigid shift,and the evolution of superconductivity can be attributed to the interplay between surface carriers and electronic correlations.Additionally,a V-shaped gap is observed at a unique location preserving the FeAs bilayer structure,where interlayer coupling effects are likely involved.The diversity of surface structures and electronic states in K12442 enhances our understanding of FeSCs and facilitates the modulation and application of FeAs superconducting layers.
文摘Two-electron atoms have been investigated near threshold of double escape within the framework of hyperspherical coordinates. A particularly useful set of hyperspherical angles has been used. It is well known for many years that the hyperradial motion is nearly separable from the hyperspherical angular motion. Therefore, the Born-Oppenheimer separation method should be useful. However, the success of that method in molecular physics is based on the small mass ratio, electron mass to nuclear mass. In the atomic application such a small parameter does not exist. Nevertheless the method works surprisingly well in the lower part of the spectrum. For increasing excitation energy the method becomes shaky. Near ionization threshold, it breaks even down. The author will present elsewhere an improved Born-Oppenheimer method. First pilot developments and comparison with the experimental situation are presented already here. Inclusion of a momentum-momentum radial coupling delivers an improved basis. We show that our extended Born-Oppenheimer approach leads to a deformation of the whole potential energy surface during the collision. In consequence of this deformation we outline a quantum derivation of the Wannier threshold cross section law, and we show that (e, 2e) angular distribution data are strongly influenced by that surface deformation. Finally, we present a mechanism for electron pair formation and decay leading to a supercurrent independent of the temperature. Our framework can be extended to more than two electrons, say 3 or 4. We conclude that our improved Born-Oppenheimer method <a href="#ref.1">[1]</a> is expected not only to deliver better numerical data, but it is expected to describe also the Wannier phenomenon. The idea of the new theory together with first qualitative results is presented in this paper.
基金Project supported by the Cumhuriyet University National MOVPE Crystal Growth and Characterization Laboratory,DPT-K120,TUBITAK (Grant Nos TBAG 105T492,TBAG 107T012,and TBAG-108T015)
文摘In this study, the energy for the ground state of helium and a few helium-like ions (Z=1-6) is computed variationally by using a Hylleraas-like wavefunction. A four-parameters wavefunction, satisfying boundary conditions for coalescence points, is combined with a Hylleraas-like basis set which explicitly incorporates r12 interelectronic distance. The main contribution of this work is the introduction of modified correlation terms leading to the definition of integral transforms which provide the calculation of expectation value of energy to be done analytically over single-particle coordinates instead of Hylleraas coordinates.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0134200)the National Natural Science Foundation of China(Grant Nos.12474343,12174147,and 12074142)the Natural Science Foundation of Jilin Province,China(Grant No.20220101016JC)。
文摘Strong feld-induced nonsequential double ionization(NSDI)is a signifcant multi-electron phenomenon that provides crucial insights into understanding electron correlation and multiple ionization of atoms and molecules,but it is typically unattainable in a circularly polarized laser pulse,especially for long-wavelength lasers.We present evidence that NSDI can occur in the presence of a near-infrared or beyond laser pulse by introducing a bowtie-nanotip.The laser-induced local plasmon can alter the local ellipticity of the feld,thereby enabling NSDI through elliptical trajectories that facilitate recollisions with parent atoms.An oval-shaped momentum distribution of recoiled ions provides evidence for the modifcation of trajectories by the aligned nanotips.Our study introduces an innovative control knob to manipulate NSDI and electron dynamics through the utilization of nanostructures.
基金supported by the National key Research and Development Program of China under Grant No.2022YFA1602500the National Natural Science Foundation of China under Grant Nos.12174316 and 1236040286,and 12404306。
文摘The Landé g factors of Ba+are very important in high-precision measurement physics.The wave functions,energy levels,and Landég factors for the 6s ^(2)S_(1/2) and 5d 2D_(3/2,5/2) states of Ba+ions were calculated using the multi-configuration Dirac-Hartree-Fock method and the model-quantum electrodynamics(QED)method.The contributions of the electron correlation effects and QED effects were discussed in detail.The transition energies are in excellent agreement with the experimental results,with differences of approximately 5 cm^(−1).The presently calculated g factor of 2.0024905(16)for the 6S1/2 agrees very well with the available experimental and theoretical results,with a difference at a level of 10^(−6).For the 5D_(3/2,5/2) states,the present results of 0.7993961(126)and 1.2003942(190)agree with the experimental results of 0.7993278(3)[Phys.Rev.A 541199(1996)]and 1.20036739(14)[Phys.Rev.Lett.124193001(2020)]very well,with differences at the level of 10−5.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12488201,12074411,12374066,12374154,and 12494593)the National Key Research and Development Program of China(Grant No.2022YFA1403900,2021YFA1401800,2022YFA1604200,2023YFA1406002,2024YFA1408301,and 2024YFA1400026)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant Nos.XDB25000000 and XDB33000000)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301800)the Youth Innovation Promotion Association of CAS(Grant No.Y2021006)Synergetic Extreme Condition User Facility(SECUF).
文摘Angle-resolved photoemission spectroscopy(ARPES)has become a cornerstone technique for elucidating the electronic structures of emergent quantum materials.Among these,kagome materials—distinguished by their two-dimensional lattice of corner-sharing triangles—provide a fertile ground for investigating exotic quantum phenomena,driven by geometric frustration,electronic correlation,and topology.In this review,we present an overview of recent ARPES studies on transition-metal kagome materials.We first outline the fundamental features of their electronic structures,including van Hove singularities,Dirac points,and flat bands,and discuss the novel quantum states that arise from many-body interactions within the kagome lattice.We then highlight key ARPES investigations into these unique electronic structures,detailing their manifestation and associated quantum states in representative kagome materials.Finally,we offer a forward-looking perspective on the potential of ARPES to uncover new quantum phenomena and its broader implications for the study of underlying physics in kagome materials.
基金supported by the National Natural Science Foundation of China (Grant No. 12074329)Nanhu Scholars Program for Young Scholars of Xinyang Normal University。
文摘With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.
文摘A four-body distorted-wave approximation is applied for theoretical analysis of the fully differential cross sections(FDCS) for proton-impact single ionization of helium atoms in their ground states. The nine-dimensional integrals for the partial amplitudes are analytically reduced to closed-form expressions or some one-dimensional integrals which can be easily calculated numerically. Calculations are performed in the scattering and perpendicular planes. The influence of the target static electron correlations on the process is investigated using a number of different bound-state wave functions for the ground state of the helium targets. An illustrative computation is performed for 75-ke V proton–helium collisions and the obtained results are compared with experimental data and other theoretical predictions. Although for small momentum transfers, the comparison shows a reasonable agreement with experiments in the scattering and perpendicular planes, some significant discrepancies are still present at large momentum transfers in these planes. However, our results are compatible and for some cases, better than those of the other sophisticated calculations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11005088 and 11047145)the Project of Basic and Advanced Technology of Henan Province, China (Grant Nos. 102300410241 and 112300410021)the Scientific Research Foundation of Education Department of Henan Province,China (Grant No. 2011B140018)
文摘Using a classical ensemble model, we investigate the correlation behaviour of electrons originating from nonsequential double ionization (NSDI) of argon atoms by the elliptically polarized laser pulses. Because of the ellipticity, not only the first electron to return but also the later return of tunneled electrons contribute significantly to NSDI. We mainly discuss two kinds of events of NSDI originating from the first and the second return separately. For the NSDI resulting from the recollision of the first return, the correlated electron momentum spectrum along the long axis of the laser polarization plane reveals an obvious V-like shape, located at the first and third quadrant. However, for the NSDI resulting from the recollision of the second return, the momenta of two electrons are distributed in the four quadrants uniformly. By analysing the trajectories of these two kinds, we find that the recollision energy and the laser phase at recollision are different for the first and second returning trajectories, which are responsible for the difference in the correlated behavior of the final electron momentum.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11888101 and 11774008)the National Key R&D Program of China (Grant Nos. 2018YFA0305604 and 2017YFA0303302)+1 种基金the Beijing Natural Science Foundation (Grant No. Z180010)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000)。
文摘Superlattice potentials are theoretically predicted to modify the single-particle electronic structures. The resulting Coulomb-interaction-dominated low-energy physics would generate highly novel many-body phenomena. Here,by in situ tunneling spectroscopy, we show the signatures of superstructure-modulated correlated electron states in epitaxial bilayer graphene(BLG) on 6H-Si C(0001). As the carrier density is locally quasi-‘tuned’ by the superlattice potentials of a 6 × 6 interface reconstruction phase, the spectral-weight transfer occurs between the two broad peaks flanking the charge-neutral point. Such a detected non-rigid band shift beyond the single-particle band description implies the existence of correlation effects, probably attributed to the modified interlayer coupling in epitaxial BLG by the 6×6 reconstruction as in magic-angle BLG by the moiré potentials. Quantitative analysis suggests that the intrinsic interface reconstruction shows a high carrier tunability of ~1/2 filling range, equivalent to the back gating by a voltage of ~70 V in a typical gated BLG/SiO_(2)/Si device. The finding in interfacemodulated epitaxial BLG with reconstruction phase extends the BLG platform with electron correlations beyond the magic-angle situation, and may stimulate further investigations on correlated states in graphene systems and other van der Waals materials.
文摘The coordination-dependent force fleld of TersofF for covalently bonded Si has been used tocalculate the cleavage force as a function of interplanar separation and hence to estimate surfaceenergies. This force field is already fitted to density functional results. The relation to bond-breaking and electron correlation will be emphasized. Finnis-Sinclair-type many-body potentialshave then been used to treat some d-electron metals. In particular, results for cleavage forcein bcc Fe will be presented, and also some calculations as two perfectly planar Fe surfaces arerubbed together' at different interplanar separations. Finally, lattice dynamical models for thesteady-state propagation of a screw dislocation, and then of a crack, will be used, again within abond-breaking type of force field. For the screw dislocation propagation. a solitary wave equationis shown to follow in the 'almost continuum' limit. Energy radiated by phonons as the dislocationmoves can thereby be calculated.