As the integration of electronic components in high-performance servers increases,heat generation significantly impacts performance and raises failure rates.Therefore,heat dissipation has become a critical concern in ...As the integration of electronic components in high-performance servers increases,heat generation significantly impacts performance and raises failure rates.Therefore,heat dissipation has become a critical concern in electronic circuit design.This study uses numerical simulations to investigate the heat dissipation characteristics of electronic components in air-cooled servers.By adjusting airflow speed,heat sink configurations,and the arrangement of straight-fin heat sinks,we optimize heat dissipation performance and analyze the mechanisms at different airflow speeds.The results show that,at the same airflow speed,the temperature of the heat sink is lower than that of the electronic components,creating a temperature gradient that enhances heat transfer.Compared to a front-to-back arrangement of two straight-fin heat sinks,placing the heat sinks parallel to each other results in a lower maximum component temperature and better temperature uniformity.Heat sinks with fins significantly improve heat dissipation.The heat sink with semicylindrical fins on the rib surface provides the best cooling performance.Moreover,compared to natural convection,the maximum temperature of the electronic components decreases by 56.17%and 61%when the incoming flow velocity is 6 m/s with two parallel flat ribbed heat sinks and front-to-back arrangement,respectively.展开更多
Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new chal...Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new challenger unit possesses identical functionalities, but with higher performances. This work aims to find the optimal number of components which should be replaced by new-type units, under budgetary constraints. In this work, the new challenger unit is characterized by lower energy consumption and the optimization steps are based on genetic algorithm (GA). The result shows the importance of this type of replacement in order to economize energy consumption and to deal with obsolescence.展开更多
The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is m...The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is mounted on the base of a rectangular horizontal duct located at the bottom of 250 mm high natural circulation loop.FC-72 is used as a coolant. The test conditions are set that the operation pressure of experimental system is 1. 013× 105 Pa, the flow rate of FC-72 is 150 g/min and the subcoolings are 10 K, 25 K and 35 k, respectively. Effect of the subcooling on nucleate boiling and critical heat flux(CHF) were investigated. The results show that subcoolingis found to significantly affect CHF for all chips and micro-pin-finned chips sharply enhanced the boiling heat transfer, CHF of micro-pin-finned chips are 2.5~3 times as large as that of smooth chip at the same subcooling.展开更多
Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammoni...Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.展开更多
In this paper, a design of a miniature antenna for biomedical implant applications is presented. The proposed structure consists of a printed antenna designed to cover all frequency bands below 1 GHz and is dedicated ...In this paper, a design of a miniature antenna for biomedical implant applications is presented. The proposed structure consists of a printed antenna designed to cover all frequency bands below 1 GHz and is dedicated to biomedical applications with good matching, omnidirectional radiation, and a maximum realized gain of −26.7 dBi. It offers two bandwidths of 270 MHz and 762 MHz respectively. A Phantom model of the elliptical cylinder of 180 × 100 × 50 mm3 was used to simulate the electromagnetic radiation inside the human body. The tissue considered is equivalent to a muscle with a relative permittivity of 57 and a conductivity equal to 0.79 S/m. We also studied the antenna behavior when close to the internal electronic components. The simulation showed that the antenna remains robust in such an environment. Finally, the Specific Absorption Rate of the muscle was evaluated when the antenna was fed with 1 V. The evaluation proved that the calculated value of 0.48 W/Kg is well below the limit value imposed by the International Commission on Non-Ionizing Radiation Protection.展开更多
1.INTRODUCTION Remarkable advances in soft bioelectronics have been made in recent decades for next-generation smart healthcare devices.The intrinsic dissimilarities in mechanical properties and charge carriers betwee...1.INTRODUCTION Remarkable advances in soft bioelectronics have been made in recent decades for next-generation smart healthcare devices.The intrinsic dissimilarities in mechanical properties and charge carriers between the soft wet biological tissues and the rigid dry conventional electronic components of bioelectronics pose immense demands in material design for advanced bioelectronics.1 Owing to their on-demand tunable mechanical properties and ionic conductivity,as stretchable and ionic conductors,hydrogels have emerged as promising biocompat-ible materials for advanced bioelectronics,which enables mechanical,electrical,and biochemical coupling between devices and human tissues。展开更多
With the increasing miniaturisation and integration of electronic products and the increase of heat, it is necessary to design and introduce heat sinks and install fans. The volume of electronic components, especially...With the increasing miniaturisation and integration of electronic products and the increase of heat, it is necessary to design and introduce heat sinks and install fans. The volume of electronic components, especially the height, is very important for the structural and thermal design of electronic devices. This paper presents a design scheme of an online height measurement device based on laser triangulation and commercial charge coupled device(CCD). It analyzes the principles of electronic component height measurement, and expounds the composition and working principle of the laser measurement system. In addition, the commonly used methods to determine the center position are compared and analysed. These methods include circle fitting, gray centroid and extension method or Gaussian fitting. These methods usually lead to different results. The experimental results show that the fitting speed of the gray centroid is faster. The 3 D model of components is given through measurement, and the error factors affecting measurement are analysed.展开更多
This work aims to numerically study the melting natural convection in a rectangular enclosure heated by three discreet protruding electronic chips. The beat sources generate heat at a constant and uniform volumetric r...This work aims to numerically study the melting natural convection in a rectangular enclosure heated by three discreet protruding electronic chips. The beat sources generate heat at a constant and uniform volumetric rate. A part of the power generated in the heat sources is dissipated to a phase change material (PCM, n-eicosane with melting temperature, Tm = 36℃). Numerical investigations were carded out in order to examine the effects of the plate thickness on the maximum temperature of electronic components, the percentage contribution of plate heat conduction on the total removed heat and temperature profiles in the plate. Con'elations for the dimensionless secured working time (time to reach the threshold temperature, Tcr = 75℃) and the corresponding liquid fraction were derived.展开更多
基金supported by the key technology project of China Southern Power Grid Corporation(GZKJXM20240009).
文摘As the integration of electronic components in high-performance servers increases,heat generation significantly impacts performance and raises failure rates.Therefore,heat dissipation has become a critical concern in electronic circuit design.This study uses numerical simulations to investigate the heat dissipation characteristics of electronic components in air-cooled servers.By adjusting airflow speed,heat sink configurations,and the arrangement of straight-fin heat sinks,we optimize heat dissipation performance and analyze the mechanisms at different airflow speeds.The results show that,at the same airflow speed,the temperature of the heat sink is lower than that of the electronic components,creating a temperature gradient that enhances heat transfer.Compared to a front-to-back arrangement of two straight-fin heat sinks,placing the heat sinks parallel to each other results in a lower maximum component temperature and better temperature uniformity.Heat sinks with fins significantly improve heat dissipation.The heat sink with semicylindrical fins on the rib surface provides the best cooling performance.Moreover,compared to natural convection,the maximum temperature of the electronic components decreases by 56.17%and 61%when the incoming flow velocity is 6 m/s with two parallel flat ribbed heat sinks and front-to-back arrangement,respectively.
文摘Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new challenger unit possesses identical functionalities, but with higher performances. This work aims to find the optimal number of components which should be replaced by new-type units, under budgetary constraints. In this work, the new challenger unit is characterized by lower energy consumption and the optimization steps are based on genetic algorithm (GA). The result shows the importance of this type of replacement in order to economize energy consumption and to deal with obsolescence.
文摘The present research is an experimental study on heat transfer characteristics of a natural circulation cooling system for electronic components. A smooth chip and two micro-pin-finned chips were tested. The chip is mounted on the base of a rectangular horizontal duct located at the bottom of 250 mm high natural circulation loop.FC-72 is used as a coolant. The test conditions are set that the operation pressure of experimental system is 1. 013× 105 Pa, the flow rate of FC-72 is 150 g/min and the subcoolings are 10 K, 25 K and 35 k, respectively. Effect of the subcooling on nucleate boiling and critical heat flux(CHF) were investigated. The results show that subcoolingis found to significantly affect CHF for all chips and micro-pin-finned chips sharply enhanced the boiling heat transfer, CHF of micro-pin-finned chips are 2.5~3 times as large as that of smooth chip at the same subcooling.
基金supported by National Natural Science Foundation of China(U21A200313)Key Program of Qingyuan Innovation Laboratory(00221003)‘111’program of Fuzhou University.
文摘Rosin,a renewable and abundant resource,has been extensively processed and chemically modified to endow it with special properties,especially in the surfactant industry.In this study,four rosin-based quaternary ammonium asymmetric gemini surfactants(RGS-2-n)with different alkyl chain lengths(n=12,14,16,18)were synthesized using a simple two-step method based on dehydroabietylamine as the raw material.The feasibility of these surfactants for cleaning purposes was comprehensively evaluated,suggesting that the surfactants own high surface activity and good cleaning performance.Furthermore,by successfully introducing the amine group of dehydroabietylamine into the hydrophilic group of the surfactants,we avoided its potential harm to the environment and water pollution.Density functional theory proves rosin-based gemini surfactants with asymmetric structure can further improve cleaning efficiency.Overall,our findings suggests that RGS-2-n surfactants are promising and sustainable candidates for cleaning electric plates,and provide new opportunities for rosin application in the electric industry.
文摘In this paper, a design of a miniature antenna for biomedical implant applications is presented. The proposed structure consists of a printed antenna designed to cover all frequency bands below 1 GHz and is dedicated to biomedical applications with good matching, omnidirectional radiation, and a maximum realized gain of −26.7 dBi. It offers two bandwidths of 270 MHz and 762 MHz respectively. A Phantom model of the elliptical cylinder of 180 × 100 × 50 mm3 was used to simulate the electromagnetic radiation inside the human body. The tissue considered is equivalent to a muscle with a relative permittivity of 57 and a conductivity equal to 0.79 S/m. We also studied the antenna behavior when close to the internal electronic components. The simulation showed that the antenna remains robust in such an environment. Finally, the Specific Absorption Rate of the muscle was evaluated when the antenna was fed with 1 V. The evaluation proved that the calculated value of 0.48 W/Kg is well below the limit value imposed by the International Commission on Non-Ionizing Radiation Protection.
基金supported by Beijing Nova Program(20220484096)the Science Foundation of China University of Petroleum-Beijing(No.2462023QNXZ005).
文摘1.INTRODUCTION Remarkable advances in soft bioelectronics have been made in recent decades for next-generation smart healthcare devices.The intrinsic dissimilarities in mechanical properties and charge carriers between the soft wet biological tissues and the rigid dry conventional electronic components of bioelectronics pose immense demands in material design for advanced bioelectronics.1 Owing to their on-demand tunable mechanical properties and ionic conductivity,as stretchable and ionic conductors,hydrogels have emerged as promising biocompat-ible materials for advanced bioelectronics,which enables mechanical,electrical,and biochemical coupling between devices and human tissues。
文摘With the increasing miniaturisation and integration of electronic products and the increase of heat, it is necessary to design and introduce heat sinks and install fans. The volume of electronic components, especially the height, is very important for the structural and thermal design of electronic devices. This paper presents a design scheme of an online height measurement device based on laser triangulation and commercial charge coupled device(CCD). It analyzes the principles of electronic component height measurement, and expounds the composition and working principle of the laser measurement system. In addition, the commonly used methods to determine the center position are compared and analysed. These methods include circle fitting, gray centroid and extension method or Gaussian fitting. These methods usually lead to different results. The experimental results show that the fitting speed of the gray centroid is faster. The 3 D model of components is given through measurement, and the error factors affecting measurement are analysed.
文摘This work aims to numerically study the melting natural convection in a rectangular enclosure heated by three discreet protruding electronic chips. The beat sources generate heat at a constant and uniform volumetric rate. A part of the power generated in the heat sources is dissipated to a phase change material (PCM, n-eicosane with melting temperature, Tm = 36℃). Numerical investigations were carded out in order to examine the effects of the plate thickness on the maximum temperature of electronic components, the percentage contribution of plate heat conduction on the total removed heat and temperature profiles in the plate. Con'elations for the dimensionless secured working time (time to reach the threshold temperature, Tcr = 75℃) and the corresponding liquid fraction were derived.